Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the accuracy of the finite element method plus time relaxation
HTML articles powered by AMS MathViewer

by J. Connors and W. Layton PDF
Math. Comp. 79 (2010), 619-648 Request permission

Abstract:

If $\overline {u}$ denotes a local, spatial average of $u$, then $u^{\prime }=u-\overline {u}$ is the associated fluctuation. Consider a time relaxation term added to the usual finite element method. The simplest case for the model advection equation $u_{t}+\overrightarrow {a}\cdot \nabla u=f(x,t)$ is \[ (u_{h,t}+\overrightarrow {a}\cdot \nabla u_{h},v_{h})+\chi (u_{h}^{\prime },v_{h}^{\prime })=(f(x,t),v_{h}). \] We analyze the error in this and (more importantly) higher order extensions and show that the added time relaxation term not only suppresses excess energy in marginally resolved scales but also increases the accuracy of the resulting finite element approximation.
References
  • N. A. Adams and A. Leonard, Deconvolution of subgrid scales for the simulation of shock-turbulence interaction, p. 201 in: Direct and Large Eddy Simulation III, (eds.: P. Voke, N. D. Sandham and L. Kleiser), Kluwer, Dordrecht, 1999.
  • N. A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, Modern Simulation Strategies for Turbulent Flow, R. T. Edwards, 2001.
  • N. A. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing, J. Comput. Phys. 178 (2002), no. 2, 391–426. MR 1899182, DOI 10.1006/jcph.2002.7034
  • A. O. H. Axelsson and J. Gustafsson, Quasioptimal finite element approximation of first order hyperbolic and convection-diffusion equations, pp. 273-281 in: Analytical and Numerical Approaches to Asymptotic Problems in Analysis, (eds: A. O. H. Axelsson, L. S. Frank, and A. van der Sluis) North Holland, Amsterdam, 1980.
  • L. C. Berselli, T. Iliescu, and W. J. Layton, Mathematics of large eddy simulation of turbulent flows, Scientific Computation, Springer-Verlag, Berlin, 2006. MR 2185509
  • Mario Bertero and Patrizia Boccacci, Introduction to inverse problems in imaging, Institute of Physics Publishing, Bristol, 1998. MR 1640759, DOI 10.1887/0750304359
  • M. Braack, E. Burman, V. John, and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4-6, 853–866. MR 2278180, DOI 10.1016/j.cma.2006.07.011
  • A. Brooks and T. J. R. Hughes, Streamline upwind Petrov-Galerkin methods for advection-dominated flows, in: 3rd Int. Conf. on FEM in Fluid Flow, 1980.
  • Erik Burman and Peter Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 15-16, 1437–1453. MR 2068903, DOI 10.1016/j.cma.2003.12.032
  • G. F. Carey, An analysis of stability and oscillations in convection-diffusion computations, Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979) AMD, vol. 34, Amer. Soc. Mech. Engrs. (ASME), New York, 1979, pp. 63–71. MR 571683
  • A. Dunca, Space averaged Navier-Stokes equations in the presence of walls, Ph.D. Thesis, University of Pittsburgh, 2004.
  • A. Dunca and Y. Epshteyn, On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows, SIAM J. Math. Anal. 37 (2006), no. 6, 1890–1902. MR 2213398, DOI 10.1137/S0036141003436302
  • Todd Dupont, Galerkin methods for first order hyperbolics: an example, SIAM J. Numer. Anal. 10 (1973), 890–899. MR 349046, DOI 10.1137/0710074
  • Vincent J. Ervin, William J. Layton, and Monika Neda, Numerical analysis of a higher order time relaxation model of fluids, Int. J. Numer. Anal. Model. 4 (2007), no. 3-4, 648–670. MR 2344062
  • R. Guenanff, Non-stationary coupling of Navier-Stokes/Euler for the generation and radiation of aerodynamic noises, PhD thesis: Dept. of Mathematics, Université Rennes 1, Rennes, France, 2004.
  • Jean-Luc Guermond, Stabilisation par viscosité de sous-maille pour l’approximation de Galerkin des opérateurs linéaires monotones, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 7, 617–622 (French, with English and French summaries). MR 1680045, DOI 10.1016/S0764-4442(99)80257-2
  • M. Germano, Differential filters of elliptic type, Phys. Fluids 29 (1986), no. 6, 1757–1758. MR 845232, DOI 10.1063/1.865650
  • B. J. Geurts, Inverse modeling for large eddy simulation, Phys. Fluids, 9(1997), 3585.
  • Max D. Gunzburger, On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems, Math. Comp. 31 (1977), no. 139, 661–675. MR 436624, DOI 10.1090/S0025-5718-1977-0436624-0
  • F. Hecht and O. Pironneau, FreeFEM++ , webpage: http://www.freefem.org.
  • G. W. Hedstrom, The Galerkin method based on Hermite cubics, SIAM J. Numer. Anal. 16 (1979), no. 3, 385–393. MR 530476, DOI 10.1137/0716032
  • T. J. Hughes, Multiscale phenomena: the Dirichlet to Neumann formulation, subgrid models, bubbles and the origin of stabilized methods, CMAME 127(1999), 387-401.
  • William J. Layton, Galerkin methods for two-point boundary value problems for first order systems, SIAM J. Numer. Anal. 20 (1983), no. 1, 161–171. MR 687374, DOI 10.1137/0720011
  • William J. Layton, Stable Galerkin methods for hyperbolic systems, SIAM J. Numer. Anal. 20 (1983), no. 2, 221–233. MR 694515, DOI 10.1137/0720015
  • W Layton, A remark on regularity of an elliptic-elliptic singular perturbation problem, technical report, http://www.mathematics.pitt.edu/research/technical-reports.php, 2007.
  • William Layton, Superconvergence of finite element discretization of time relaxation models of advection, BIT 47 (2007), no. 3, 565–576. MR 2338532, DOI 10.1007/s10543-007-0142-z
  • W. Layton, Model reduction by constraints, discretization of flow problems and an induced pressure stabilization, Numer. Linear Algebra Appl. 12 (2005), no. 5-6, 547–562. MR 2150167, DOI 10.1002/nla.440
  • W. Layton, A connection between subgrid scale eddy viscosity and mixed methods, Appl. Math. Comput. 133 (2002), no. 1, 147–157. MR 1923189, DOI 10.1016/S0096-3003(01)00228-4
  • W. Layton and R. Lewandowski, A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions, Appl. Math. Lett. 16 (2003), no. 8, 1205–1209. MR 2015713, DOI 10.1016/S0893-9659(03)90118-2
  • W. Layton and R. Lewandowski, Residual stress of approximate deconvolution large eddy simulation models of turbulence. Journal of Turbulence, 46(2006), 1-21.
  • W. Layton and R. Lewandowski, On a well-posed turbulence model, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 1, 111–128. MR 2172198, DOI 10.3934/dcdsb.2006.6.111
  • William Layton, Carolina C. Manica, Monika Neda, and Leo G. Rebholz, Numerical analysis and computational testing of a high accuracy Leray-deconvolution model of turbulence, Numer. Methods Partial Differential Equations 24 (2008), no. 2, 555–582. MR 2382797, DOI 10.1002/num.20281
  • William J. Layton, Carolina C. Manica, Monika Neda, and Leo G. Rebholz, Helicity and energy conservation and dissipation in approximate deconvolution LES models of turbulence, Adv. Appl. Fluid Mech. 4 (2008), no. 1, 1–46. MR 2488583
  • William Layton and Iuliana Stanculescu, K-41 optimised approximate deconvolution models, Int. J. Comput. Sci. Math. 1 (2007), no. 2-4, 396–411. MR 2396390, DOI 10.1504/IJCSM.2007.016554
  • William Layton and Monika Neda, Truncation of scales by time relaxation, J. Math. Anal. Appl. 325 (2007), no. 2, 788–807. MR 2270051, DOI 10.1016/j.jmaa.2006.02.014
  • P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. MR 0658142
  • C. C. Manica and S. Kaya-Merdan, Convergence Analysis of the Finite Element Method for a Fundamental Model in Turbulence, tech. report, http://www.math.pitt.edu/techreports.html, 2006.
  • C. C. Manica and I. Stanculescu, Numerical Analysis of Tikhonov Deconvolution Model, University of Pittsburgh Technical Report, http://www.math.pitt.edu/techreports.html, 2007.
  • J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn and R. Friedrich, An explicit filtering method for large eddy simulation of compressible flows, Physics of Fluids 15(2003), 2279-2289.
  • H.-G. Roos, M. Stynes, and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, 1996. Convection-diffusion and flow problems. MR 1477665, DOI 10.1007/978-3-662-03206-0
  • Philip Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion, Phys. Rev. A (3) 40 (1989), no. 12, 7193–7196. MR 1031939, DOI 10.1103/PhysRevA.40.7193
  • Pierre Sagaut, Large eddy simulation for incompressible flows, Scientific Computation, Springer-Verlag, Berlin, 2001. An introduction; With an introduction by Marcel Lesieur; Translated from the 1998 French original by the author. MR 1815221, DOI 10.1007/978-3-662-04416-2
  • A. H. Schatz and L. B. Wahlbin, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), no. 161, 47–89. MR 679434, DOI 10.1090/S0025-5718-1983-0679434-4
  • Steven Schochet and Eitan Tadmor, The regularized Chapman-Enskog expansion for scalar conservation laws, Arch. Rational Mech. Anal. 119 (1992), no. 2, 95–107. MR 1176360, DOI 10.1007/BF00375117
  • Iuliana Stanculescu, Existence theory of abstract approximate deconvolution models of turbulence, Ann. Univ. Ferrara Sez. VII Sci. Mat. 54 (2008), no. 1, 145–168. MR 2403379, DOI 10.1007/s11565-008-0039-z
  • S. Stolz and N. A. Adams, On the approximate deconvolution procedure for LES, Phys. Fluids, II(1999),1699-1701.
  • S. Stolz, N. A. Adams and L. Kleiser, The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction, Phys. Fluids 13 (2001),2985.
  • S. Stolz, N. A. Adams and L. Kleiser, An approximate deconvolution model for large eddy simulation with application to wall-bounded flows, Phys. Fluids 13 (2001),997.
  • S. Stolz, N. A. Adams and L. Kleiser, The approximate deconvolution model for compressible flows: isotropic turbulence and shock-boundary-layer interaction, in: Advances in LES of complex flows (editors: R. Friedrich and W. Rodi) Kluwer, Dordrecht, 2002.
  • Vidar Thomée and Burton Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SIAM J. Numer. Anal. 11 (1974), 1059–1068. MR 371088, DOI 10.1137/0711081
  • P. van Cittert, Zum Einfluss der Spaltbreite auf die Intensitats verteilung in Spektrallinien II, Zeit. fur Physik 69 (1931), 298-308.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2010): 65M15, 65M60
  • Retrieve articles in all journals with MSC (2010): 65M15, 65M60
Additional Information
  • J. Connors
  • Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
  • W. Layton
  • Affiliation: Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
  • Email: wjl@pitt.edu
  • Received by editor(s): May 30, 2008
  • Received by editor(s) in revised form: December 13, 2008
  • Published electronically: December 16, 2009
  • Additional Notes: The work of both authors was partially supported by NSF grants DMS 0508260 and 0810385.
  • © Copyright 2009 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 79 (2010), 619-648
  • MSC (2010): Primary 65M15; Secondary 65M60
  • DOI: https://doi.org/10.1090/S0025-5718-09-02316-3
  • MathSciNet review: 2600537