On the accuracy of the finite element method plus time relaxation
Authors:
J. Connors and W. Layton
Journal:
Math. Comp. 79 (2010), 619-648
MSC (2010):
Primary 65M15; Secondary 65M60
DOI:
https://doi.org/10.1090/S0025-5718-09-02316-3
Published electronically:
December 16, 2009
MathSciNet review:
2600537
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If denotes a local, spatial average of
, then
is the associated fluctuation. Consider a time relaxation term added to the usual finite element method. The simplest case for the model advection equation
is

- [AL99] N. A. Adams and A. Leonard, Deconvolution of subgrid scales for the simulation of shock-turbulence interaction, p. 201 in: Direct and Large Eddy Simulation III, (eds.: P. Voke, N. D. Sandham and L. Kleiser), Kluwer, Dordrecht, 1999.
- [AS01] N. A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, Modern Simulation Strategies for Turbulent Flow, R. T. Edwards, 2001.
- [AS02] N. A. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing, J. C. P., 178 (2002), 391-426. MR 1899182 (2003b:76100)
- [AG79] A. O. H. Axelsson and J. Gustafsson, Quasioptimal finite element approximation of first order hyperbolic and convection-diffusion equations, pp. 273-281 in: Analytical and Numerical Approaches to Asymptotic Problems in Analysis, (eds: A. O. H. Axelsson, L. S. Frank, and A. van der Sluis) North Holland, Amsterdam, 1980.
- [BIL06] L. C. Berselli, T. Iliescu and W. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Springer, Berlin, 2006 MR 2185509 (2006h:76071)
- [BB98] M. Bertero and B. Boccacci, Introduction to Inverse Problems in Imaging, IOP Publishing Ltd.,1998. MR 1640759 (99k:78027)
- [BBJL07] M. Braack, E. Burman, V. John and G. Lube, Stabilized FEMs for the generalized Oseen problem, CMAME 196(2007), 853-866. MR 2278180 (2007i:76065)
- [BH80] A. Brooks and T. J. R. Hughes, Streamline upwind Petrov-Galerkin methods for advection-dominated flows, in: 3rd Int. Conf. on FEM in Fluid Flow, 1980.
- [BH04] E. Burman and P. Hansbo, Edge stabilizations for Galerkin approximations of convection-diffusion-reaction problems, CMAME 193(2004), 1437-1453. MR 2068903 (2005d:65186)
- [C79] G. F. Carey, An analysis of stability and oscillations in convection-diffusion computations, 63-71 in: FEM for Convection Dominated Flows, T. J. R. Hughes, ed., ASME, vol. 34 , 1979. MR 571683 (81i:65072)
- [D04] A. Dunca, Space averaged Navier-Stokes equations in the presence of walls, Ph.D. Thesis, University of Pittsburgh, 2004.
- [DE06] A. Dunca and Y. Epshteyn, On the Stolz-Adams de-convolution model for the large eddy simulation of turbulent flows, SIAM J. Math. Anal. 37(2006), 1890-1902. MR 2213398 (2006k:76066)
- [Du73] T. Dupont, Galerkin methods for first order hyperbolics: an example, SINUM 10(1973), 890-899. MR 0349046 (50:1540)
- [ELN07] V. Ervin, W. Layton and M. Neda , Numerical analysis of a higher order time relaxation model of fluids, Int. J. Numer. Anal. and Modeling, 4(2007), 648-670. MR 2344062 (2008j:76035)
- [Gue04] R. Guenanff, Non-stationary coupling of Navier-Stokes/Euler for the generation and radiation of aerodynamic noises, PhD thesis: Dept. of Mathematics, Université Rennes 1, Rennes, France, 2004.
- [Guer99] J.-L. Guermond, Subgrid stabilization of Galerkin approximations of monotone operators, C. R. Acad. Sci. Paris, Série I, 328 7 (1999) 617-622. MR 1680045 (99k:65049)
- [Ger86] M. Germano, Differential filters of elliptic type, Phys. Fluids, 29(1986), 1757-1758. MR 845232 (87h:76075b)
- [Geu97] B. J. Geurts, Inverse modeling for large eddy simulation, Phys. Fluids, 9(1997), 3585.
- [G77] M. Gunzburger, On the stability of Galerkin methods for Initial-Boundary Value Problems for hyperbolic systems, Math. Comp. 31 (1977) 661-675. MR 0436624 (55:9567)
- [HePi] F. Hecht and O. Pironneau, FreeFEM++ , webpage: http://www.freefem.org.
- [Hed79] G. W. Hedstrom, The Galerkin Method Based on Hermite Cubics, SINUM,16(1979), 385-393. MR 530476 (80i:65116)
- [H99] T. J. Hughes, Multiscale phenomena: the Dirichlet to Neumann formulation, subgrid models, bubbles and the origin of stabilized methods, CMAME 127(1999), 387-401.
- [L83] W. Layton, Galerkin Methods for Two-Point Boundary Value Problems for First Order Systems, SINUM 20 (1983),161-171. MR 687374 (84d:65059)
- [L83b] W. Layton, Stable Galerkin Methods for Hyperbolic Systems, SINUM 20 (1983), 221-233. MR 694515 (85c:65120)
- [L07] W Layton, A remark on regularity of an elliptic-elliptic singular perturbation problem, technical report, http://www.mathematics.pitt.edu/research/technical-reports.php, 2007.
- [L07b] W. Layton, Superconvergence of finite element discretization of time relaxation models of advection, BIT, 47(2007) 565-576. MR 2338532 (2009g:65127)
- [L05] W. Layton, Model reduction by constraints and an induced pressure stabilization, J. Numer. Linear Algb. and Applications, 12(2005), 547-562. MR 2150167 (2006e:76083)
- [L02] W Layton, A connection between subgrid-scale eddy viscosity and mixed methods, Applied Math and Computing, 133[2002],147-157 MR 1923189 (2003h:76102)
- [LL03] W. Layton and R. Lewandowski, A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions, Applied Math. Letters 16(2003), 1205-1209. MR 2015713 (2004j:76095)
- [LL05] W. Layton and R. Lewandowski, Residual stress of approximate deconvolution large eddy simulation models of turbulence. Journal of Turbulence, 46(2006), 1-21.
- [LL06a] W. Layton and R Lewandowski, On a well posed turbulence model, Discrete and Continuous Dynamical Systems, Series B, 6(2006) 111-128. MR 2172198 (2006g:76054)
- [LMNR08] W. Layton, C. Manica, M. Neda and L. Rebholz, Numerical analysis of a high accuracy Leray-deconvolution model of turbulence, Numerical Methods for PDEs, 24(2008) 555-582. MR 2382797 (2009b:76064)
- [LMNR06] W. Layton, C. Manica, M. Neda and L. Rebholz, The joint Helicity-Energy cascade for homogeneous, isotropic turbulence generated by approximate deconvolution models, Adv. and Appls. in Fluid Mechanics, 4(2008), 1-46. MR 2488583
- [LS07] W. Layton and I. Stanculescu, K41 optimized deconvolution models, Int. J. Computing and Mathematics, 1(2007), 396-411. MR 2396390 (2009a:76124)
- [LN07] W. Layton and M. Neda, Truncation of scales by time relaxation, JMAA 325(2007), 788-807. MR 2270051 (2008c:76049)
- [LR74] P. Lesaint and P. A. Raviart, On a finite element method for solving the neutron transport equation, 89-112 in: Mathematical aspects of finite elements in partial differential equations, C. de Boor, ed., Academic Press, N.Y., 1974. MR 0658142 (58:31918)
- [MM06] C. C. Manica and S. Kaya-Merdan, Convergence Analysis of the Finite Element Method for a Fundamental Model in Turbulence, tech. report, http://www.math.pitt.edu/techreports.html, 2006.
- [MS07] C. C. Manica and I. Stanculescu, Numerical Analysis of Tikhonov Deconvolution Model, University of Pittsburgh Technical Report, http://www.math.pitt.edu/techreports.html, 2007.
- [MLF03] J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn and R. Friedrich, An explicit filtering method for large eddy simulation of compressible flows, Physics of Fluids 15(2003), 2279-2289.
- [RST96] H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1996. MR 1477665 (99a:65134)
- [R89] Ph. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion, Phys. Rev.A 40 (1989), 7193. MR 1031939 (91b:82047)
- [S01] P. Sagaut, Large eddy simulation for Incompressible flows, Springer, Berlin, 2001. MR 1815221 (2002f:76047)
- [SW83] A.H. Schatz and L. Wahlbin, On the finite element method for a singularly perturbed reaction-diffusion equation in two and one dimension, Math. Comp., 40(1983) 47-79. MR 679434 (84c:65137)
- [ST92] S. Schochet and E. Tadmor, The regularized Chapman-Enskog expansion for scalar conservation laws, Arch. Rat. Mech. Anal. 119 (1992), 95. MR 1176360 (93f:35191)
- [S07] I. Stanculescu, Existence Theory of Abstract Approximate Deconvolution Models of Turbulence, Annali dell'Universitá di Ferrara, 54(2008), 145-168. MR 2403379 (2009d:76058)
- [SA99] S. Stolz and N. A. Adams, On the approximate deconvolution procedure for LES, Phys. Fluids, II(1999),1699-1701.
- [SAK01a] S. Stolz, N. A. Adams and L. Kleiser, The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction, Phys. Fluids 13 (2001),2985.
- [SAK01b] S. Stolz, N. A. Adams and L. Kleiser, An approximate deconvolution model for large eddy simulation with application to wall-bounded flows, Phys. Fluids 13 (2001),997.
- [SAK02] S. Stolz, N. A. Adams and L. Kleiser, The approximate deconvolution model for compressible flows: isotropic turbulence and shock-boundary-layer interaction, in: Advances in LES of complex flows (editors: R. Friedrich and W. Rodi) Kluwer, Dordrecht, 2002.
- [TW74] V. Thomée and B. Wendroff, Convergence estimates for Galerkin methods for variable coefficient initial value problems, SINUM 11(1973), 1059-1068. MR 0371088 (51:7309)
- [vC31] P. van Cittert, Zum Einfluss der Spaltbreite auf die Intensitats verteilung in Spektrallinien II, Zeit. fur Physik 69 (1931), 298-308.
Retrieve articles in Mathematics of Computation with MSC (2010): 65M15, 65M60
Retrieve articles in all journals with MSC (2010): 65M15, 65M60
Additional Information
J. Connors
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
W. Layton
Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Email:
wjl@pitt.edu
DOI:
https://doi.org/10.1090/S0025-5718-09-02316-3
Keywords:
Time relaxation,
deconvolution,
hyperbolic equation,
finite element method
Received by editor(s):
May 30, 2008
Received by editor(s) in revised form:
December 13, 2008
Published electronically:
December 16, 2009
Additional Notes:
The work of both authors was partially supported by NSF grants DMS 0508260 and 0810385.
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.