On the accuracy of the finite element method plus time relaxation

Authors:
J. Connors and W. Layton

Journal:
Math. Comp. **79** (2010), 619-648

MSC (2010):
Primary 65M15; Secondary 65M60

DOI:
https://doi.org/10.1090/S0025-5718-09-02316-3

Published electronically:
December 16, 2009

MathSciNet review:
2600537

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If denotes a local, spatial average of , then is the associated fluctuation. Consider a time relaxation term added to the usual finite element method. The simplest case for the model advection equation is

**[AL99]**N. A. Adams and A. Leonard,*Deconvolution of subgrid scales for the simulation of shock-turbulence interaction*, p. 201 in:*Direct and Large Eddy Simulation III*, (eds.: P. Voke, N. D. Sandham and L. Kleiser), Kluwer, Dordrecht, 1999.**[AS01]**N. A. Adams and S. Stolz,*Deconvolution methods for subgrid-scale approximation in large eddy simulation*,*Modern Simulation Strategies for Turbulent Flow*, R. T. Edwards, 2001.**[AS02]**N. A. Adams and S. Stolz,*A subgrid-scale deconvolution approach for shock capturing*, J. C. P., 178 (2002), 391-426. MR**1899182 (2003b:76100)****[AG79]**A. O. H. Axelsson and J. Gustafsson,*Quasioptimal finite element approximation of first order hyperbolic and convection-diffusion equations*, pp. 273-281 in:*Analytical and Numerical Approaches to Asymptotic Problems in Analysis*, (eds: A. O. H. Axelsson, L. S. Frank, and A. van der Sluis) North Holland, Amsterdam, 1980.**[BIL06]**L. C. Berselli, T. Iliescu and W. Layton,*Mathematics of Large Eddy Simulation of Turbulent Flows*, Springer, Berlin, 2006 MR**2185509 (2006h:76071)****[BB98]**M. Bertero and B. Boccacci,*Introduction to Inverse Problems in Imaging*, IOP Publishing Ltd.,1998. MR**1640759 (99k:78027)****[BBJL07]**M. Braack, E. Burman, V. John and G. Lube,*Stabilized FEMs for the generalized Oseen problem*, CMAME 196(2007), 853-866. MR**2278180 (2007i:76065)****[BH80]**A. Brooks and T. J. R. Hughes,*Streamline upwind Petrov-Galerkin methods for advection-dominated flows*, in: 3rd Int. Conf. on FEM in Fluid Flow, 1980.**[BH04]**E. Burman and P. Hansbo,*Edge stabilizations for Galerkin approximations of convection-diffusion-reaction problems*, CMAME 193(2004), 1437-1453. MR**2068903 (2005d:65186)****[C79]**G. F. Carey,*An analysis of stability and oscillations in convection-diffusion computations*, 63-71 in: FEM for Convection Dominated Flows, T. J. R. Hughes, ed., ASME, vol. 34 , 1979. MR**571683 (81i:65072)****[D04]**A. Dunca,*Space averaged Navier-Stokes equations in the presence of walls*, Ph.D. Thesis, University of Pittsburgh, 2004.**[DE06]**A. Dunca and Y. Epshteyn,*On the Stolz-Adams de-convolution model for the large eddy simulation of turbulent flows*, SIAM J. Math. Anal. 37(2006), 1890-1902. MR**2213398 (2006k:76066)****[Du73]**T. Dupont,*Galerkin methods for first order hyperbolics: an example*, SINUM 10(1973), 890-899. MR**0349046 (50:1540)****[ELN07]**V. Ervin, W. Layton and M. Neda ,*Numerical analysis of a higher order time relaxation model of fluids*, Int. J. Numer. Anal. and Modeling, 4(2007), 648-670. MR**2344062 (2008j:76035)****[Gue04]**R. Guenanff,*Non-stationary coupling of Navier-Stokes/Euler for the generation and radiation of aerodynamic noises*, PhD thesis: Dept. of Mathematics, Université Rennes 1, Rennes, France, 2004.**[Guer99]**J.-L. Guermond,*Subgrid stabilization of Galerkin approximations of monotone operators*, C. R. Acad. Sci. Paris, Série I, 328 7 (1999) 617-622. MR**1680045 (99k:65049)****[Ger86]**M. Germano,*Differential filters of elliptic type*, Phys. Fluids, 29(1986), 1757-1758. MR**845232 (87h:76075b)****[Geu97]**B. J. Geurts,*Inverse modeling for large eddy simulation*, Phys. Fluids, 9(1997), 3585.**[G77]**M. Gunzburger,*On the stability of Galerkin methods for Initial-Boundary Value Problems for hyperbolic systems*, Math. Comp. 31 (1977) 661-675. MR**0436624 (55:9567)****[HePi]**F. Hecht and O. Pironneau,*FreeFEM++*, webpage: http://www.freefem.org.**[Hed79]**G. W. Hedstrom,*The Galerkin Method Based on Hermite Cubics*, SINUM,16(1979), 385-393. MR**530476 (80i:65116)****[H99]**T. J. Hughes,*Multiscale phenomena: the Dirichlet to Neumann formulation, subgrid models, bubbles and the origin of stabilized methods*, CMAME 127(1999), 387-401.**[L83]**W. Layton,*Galerkin Methods for Two-Point Boundary Value Problems for First Order Systems*, SINUM 20 (1983),161-171. MR**687374 (84d:65059)****[L83b]**W. Layton,*Stable Galerkin Methods for Hyperbolic Systems,*SINUM 20 (1983), 221-233. MR**694515 (85c:65120)****[L07]**W Layton,*A remark on regularity of an elliptic-elliptic singular perturbation problem,*technical report, http://www.mathematics.pitt.edu/research/technical-reports.php, 2007.**[L07b]**W. Layton,*Superconvergence of finite element discretization of time relaxation models of advection*, BIT, 47(2007) 565-576. MR**2338532 (2009g:65127)****[L05]**W. Layton,*Model reduction by constraints and an induced pressure stabilization*, J. Numer. Linear Algb. and Applications, 12(2005), 547-562. MR**2150167 (2006e:76083)****[L02]**W Layton,*A connection between subgrid-scale eddy viscosity and mixed methods*, Applied Math and Computing, 133[2002],147-157 MR**1923189 (2003h:76102)****[LL03]**W. Layton and R. Lewandowski,*A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions*, Applied Math. Letters 16(2003), 1205-1209. MR**2015713 (2004j:76095)****[LL05]**W. Layton and R. Lewandowski,*Residual stress of approximate deconvolution large eddy simulation models of turbulence*.*Journal of Turbulence*, 46(2006), 1-21.**[LL06a]**W. Layton and R Lewandowski,*On a well posed turbulence model*, Discrete and Continuous Dynamical Systems, Series B, 6(2006) 111-128. MR**2172198 (2006g:76054)****[LMNR08]**W. Layton, C. Manica, M. Neda and L. Rebholz,*Numerical analysis of a high accuracy Leray-deconvolution model of turbulence,*Numerical Methods for PDEs, 24(2008) 555-582. MR**2382797 (2009b:76064)****[LMNR06]**W. Layton, C. Manica, M. Neda and L. Rebholz,*The joint Helicity-Energy cascade for homogeneous, isotropic turbulence generated by approximate deconvolution models,*Adv. and Appls. in Fluid Mechanics, 4(2008), 1-46. MR**2488583****[LS07]**W. Layton and I. Stanculescu,*K41 optimized deconvolution models*, Int. J. Computing and Mathematics, 1(2007), 396-411. MR**2396390 (2009a:76124)****[LN07]**W. Layton and M. Neda,*Truncation of scales by time relaxation*, JMAA 325(2007), 788-807. MR**2270051 (2008c:76049)****[LR74]**P. Lesaint and P. A. Raviart,*On a finite element method for solving the neutron transport equation*, 89-112 in:*Mathematical aspects of finite elements in partial differential equations*, C. de Boor, ed., Academic Press, N.Y., 1974. MR**0658142 (58:31918)****[MM06]**C. C. Manica and S. Kaya-Merdan,*Convergence Analysis of the Finite Element Method for a Fundamental Model in Turbulence*, tech. report, http://www.math.pitt.edu/techreports.html, 2006.**[MS07]**C. C. Manica and I. Stanculescu,*Numerical Analysis of Tikhonov Deconvolution Model,*University of Pittsburgh Technical Report, http://www.math.pitt.edu/techreports.html, 2007.**[MLF03]**J. Mathew, R. Lechner, H. Foysi, J. Sesterhenn and R. Friedrich,*An explicit filtering method for large eddy simulation of compressible flows*, Physics of Fluids 15(2003), 2279-2289.**[RST96]**H.-G. Roos, M. Stynes and L. Tobiska,*Numerical Methods for Singularly Perturbed Differential Equations*, Springer, Berlin, 1996. MR**1477665 (99a:65134)****[R89]**Ph. Rosenau,*Extending hydrodynamics via the regularization of the Chapman-Enskog expansion*, Phys. Rev.A 40 (1989), 7193. MR**1031939 (91b:82047)****[S01]**P. Sagaut,*Large eddy simulation for Incompressible flows,*Springer, Berlin, 2001. MR**1815221 (2002f:76047)****[SW83]**A.H. Schatz and L. Wahlbin,*On the finite element method for a singularly perturbed reaction-diffusion equation in two and one dimension*, Math. Comp., 40(1983) 47-79. MR**679434 (84c:65137)****[ST92]**S. Schochet and E. Tadmor,*The regularized Chapman-Enskog expansion for scalar conservation laws*, Arch. Rat. Mech. Anal. 119 (1992), 95. MR**1176360 (93f:35191)****[S07]**I. Stanculescu,*Existence Theory of Abstract Approximate Deconvolution Models of Turbulence,*Annali dell'Universitá di Ferrara, 54(2008), 145-168. MR**2403379 (2009d:76058)****[SA99]**S. Stolz and N. A. Adams,*On the approximate deconvolution procedure for LES*, Phys. Fluids, II(1999),1699-1701.**[SAK01a]**S. Stolz, N. A. Adams and L. Kleiser,*The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction*, Phys. Fluids 13 (2001),2985.**[SAK01b]**S. Stolz, N. A. Adams and L. Kleiser,*An approximate deconvolution model for large eddy simulation with application to wall-bounded flows*, Phys. Fluids 13 (2001),997.**[SAK02]**S. Stolz, N. A. Adams and L. Kleiser,*The approximate deconvolution model for compressible flows: isotropic turbulence and shock-boundary-layer interaction*, in: Advances in LES of complex flows (editors: R. Friedrich and W. Rodi) Kluwer, Dordrecht, 2002.**[TW74]**V. Thomée and B. Wendroff,*Convergence estimates for Galerkin methods for variable coefficient initial value problems*, SINUM 11(1973), 1059-1068. MR**0371088 (51:7309)****[vC31]**P. van Cittert,*Zum Einfluss der Spaltbreite auf die Intensitats verteilung in Spektrallinien II*, Zeit. fur Physik 69 (1931), 298-308.

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
65M15,
65M60

Retrieve articles in all journals with MSC (2010): 65M15, 65M60

Additional Information

**J. Connors**

Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

**W. Layton**

Affiliation:
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

Email:
wjl@pitt.edu

DOI:
https://doi.org/10.1090/S0025-5718-09-02316-3

Keywords:
Time relaxation,
deconvolution,
hyperbolic equation,
finite element method

Received by editor(s):
May 30, 2008

Received by editor(s) in revised form:
December 13, 2008

Published electronically:
December 16, 2009

Additional Notes:
The work of both authors was partially supported by NSF grants DMS 0508260 and 0810385.

Article copyright:
© Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.