J. Connors and W. Layton, On the accuracy of the finite element method plus time relaxation .. 619
R. Eymard, T. Gallouët, R. Herbin, and J. C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case ... 649
Peter K. Moore and Marina Rangelova, A posteriori error estimation for hp-adaptivity for fourth-order equations .. 677
Mo Mu and Xiaohong Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model .. 707
Howard C. Elman, Darran G. Furnival, and Catherine E. Powell, $H(\text{div})$ preconditioning for a mixed finite element formulation of the diffusion problem with random data .. 733
Andrew Christlieb, Benjamin Ong, and Jing-Mei Qiu, Integral deferred correction methods constructed with high order Runge–Kutta integrators .. 761
Etienne Emmrich and Mechthild Thalhammer, Stiffly accurate Runge–Kutta methods for nonlinear evolution problems governed by a monotone operator .. 785
Li-Lian Wang, Analysis of spectral approximations using prolate spheroidal wave functions .. 807
Shuhuang Xiang and Haiyong Wang, Fast integration of highly oscillatory integrals with exotic oscillators .. 829
D. S. Lubinsky and A. Sidi, Positive interpolatory quadrature rules generated by some biorthogonal polynomials .. 845
H. Monien, Gaussian quadrature for sums: A rapidly convergent summation scheme .. 857
Folkmar Bornemann, On the numerical evaluation of Fredholm determinants .. 871
Bin Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets .. 917
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski, On decompositions of multivariate functions .. 953
Stefano Capparelli, Alberto Del Fra, and Carlo Sciò, On the span of polynomials with integer coefficients .. 967
Grzegorz W. Wasilkowski and Henryk Woźniakowski, On the exponent of discrepancies .. 983
Josef Dick and Peter Kritzer, Duality theory and propagation rules for generalized digital nets .. 993
Ibrahim Kirat, Disk-like tiles and self-affine curves with noncollinear digits .. 1019
Chang Heon Kim and Ja Kyung Koo, Generators of function fields of the modular curves $X_1(5)$ and $X_1(6)$.. 1047
T. Recio, J. R. Sendra, L. F. Tabera, and C. Villarino, Generalizing circles over algebraic extensions .. 1067
Carlos Rito, On equations of double planes with $p_g = q = 1$.. 1091
Qi Cheng, Xianmeng Meng, Celi Sun, and Jiazhe Chen, Bounding the sum of square roots via lattice reduction 1109
Byeong Moon Kim, Ji Young Kim, and Poo-Sung Park, The fifteen theorem for universal Hermitian lattices over imaginary quadratic fields 1123
Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field 1145
Siguna Müller, On the existence and non-existence of elliptic pseudoprimes 1171
Romain Cosset, Factorization with genus 2 curves 1191
Jaap Korevaar and Herman te Riele, Average prime-pair counting formula ... 1209
Reviews and Descriptions of Tables and Books 1231
Victor Shoup 4
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/peer-review-submission, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/.

The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \LaTeX. To this end, the Society has prepared \LaTeX author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \LaTeX style file and the \label and \ref commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \TeX, using \LaTeX also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \LaTeX papers also move more efficiently through the production stream, helping to minimize publishing costs.

\LaTeX is the highly preferred format of \TeX, but author packages are also available in \LaTeXe. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \LaTeXe or plain \TeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \LaTeXe users will find that \LaTeXe is the same as \LaTeX with additional
commands to simplify the typesetting of mathematics, and users of plain TeX should have the foundation for learning \texttt{AMSTeX}.

Authors may retrieve an author package for \textit{Mathematics of Computation} from \url{www.ams.org/mcom/mcomauthorpac.html} or via FTP to \url{ftp.ams.org} (login as \texttt{anonymous}, enter your complete email address as password, and type \texttt{cd pub/author-info}). The \textit{AMS Author Handbook} and the \textit{Instruction Manual} are available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to \texttt{tech-support@ams.org} (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \texttt{AMSTeX} or \texttt{AMSTeX} and the publication in which your paper will appear. Please be sure to include your complete email address.

\textbf{After acceptance.} The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at \url{www.ams.org/submit-book-journal/}, sent via email to \texttt{pub-submit@ams.org} (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

\textbf{Electronic graphics.} Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/authors/journals.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10\%.

\textbf{AMS policy on making changes to articles after posting.} Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata article. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.
Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

\TeX\ files available upon request. \TeX\ files are available upon request for authors by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX\ file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. \textbf{Note:} Because \TeX\ production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX\ files cannot be guaranteed to run through the author’s version of \TeX\ without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s \TeX\ environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; \textit{E-mail:} brenner@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Herverlee, Belgium; \textit{E-mail:} ronald.cools@cs.kuleuven.ac.be

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; \textit{E-mail:} igor@comp.mq.edu.au

CHI-WANG SHU, Chair. Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; \textit{E-mail:} mathcomp@dam.brown.edu

Board of Associate Editors

REMI ABGRALL, INRIA & Institut Polytechnique de Bordeaux, Team Bacchus and Institut de Mathematiques de Bordeaux, Bat A29 bis, 351 cours de la Liberation, 33 405 Talence, Cedex France; \textit{E-mail:} abgrall@math.u-bordeaux.fr

DANIELA CALVETTI, Department of Mathematics, Case Western Reserve University, Yost Hall, 10900 Euclid Avenue, Cleveland, OH 44106 USA; \textit{E-mail:} daniela.calvetti@case.edu

ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; \textit{E-mail:} zmchen@lsec.cc.ac.cn

JEAN-MARC COUVEIGNES, Departement de Mathematiques et Informatique, Universite Toulouse 2, 5, alles Antonio Machado, 31058 Toulouse Cedex 9, France; \textit{E-mail:} couveig@univ-tlse2.fr

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; \textit{E-mail:} rduran@dm.uba.ar

IVAN P. GAVRILYUK, Berufskakademie Thuringen, Am Wartenberg 2, D-99817 Eisenach, Germany; \textit{E-mail:} ipg@ba-eisenach.de

VIVETTE GIRault, Laboratoire Jacques-Louis Lions, Boite Courrier 187, Universite de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; \textit{E-mail:} girault@ann.jussieu.fr
Ibrahim Kirat, Disk-like tiles and self-affine curves with noncollinear digits 1019
Chang Heon Kim and Ja Kyung Koo, Generators of function fields of the modular curves $X_1(5)$ and $X_1(6)$ 1047
T. Recio, J. R. Sendra, L. F. Tabera, and C. Villarino, Generalizing circles over algebraic extensions .. 1067
Carlos Rito, On equations of double planes with $p_g = q = 1$ 1091
Qi Cheng, Xianmeng Meng, Celi Sun, and Jiazhe Chen, Bounding the sum of square roots via lattice reduction 1109
Byeong Moon Kim, Ji Young Kim, and Poo-Sung Park, The fifteen theorem for universal Hermitian lattices over imaginary quadratic fields 1123
Luis Dieulefait, Lucio Guerberoff, and Ariel Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field 1145
Siguna Müller, On the existence and non-existence of elliptic pseudoprimes 1171
Romain Cosset, Factorization with genus 2 curves 1191
Jaap Korevaar and Herman te Riele, Average prime-pair counting formula ... 1209
Reviews and Descriptions of Tables and Books 1231
Victor Shoup 4
J. Connors and W. Layton, On the accuracy of the finite element method plus time relaxation .. 619
R. Eymard, T. Gallouët, R. Herbin, and J. C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: the isentropic case ... 649
Peter K. Moore and Marina Rangelova, A posteriori error estimation for hp-adaptivity for fourth-order equations 677
Mo Mu and Xiaohong Zhu, Decoupled schemes for a non-stationary mixed Stokes-Darcy model ... 707
Howard C. Elman, Darran G. Furnival, and Catherine E. Powell, $H(\text{div})$ preconditioning for a mixed finite element formulation of the diffusion problem with random data ... 733
Andrew Christlieb, Benjamin Ong, and Jing-Mei Qiu, Integral deferred correction methods constructed with high order Runge–Kutta integrators ... 761
Etienne Emmrich and Mechthild Thalhammer, Stiffly accurate Runge–Kutta methods for nonlinear evolution problems governed by a monotone operator ... 785
Li-Lian Wang, Analysis of spectral approximations using prolate spheroidal wave functions .. 807
Shuhuang Xiang and Haiyong Wang, Fast integration of highly oscillatory integrals with exotic oscillators .. 829
D. S. Lubinsky and A. Sidi, Positive interpolatory quadrature rules generated by some biorthogonal polynomials 845
H. Monien, Gaussian quadrature for sums: A rapidly convergent summation scheme ... 857
Folkmar Bornemann, On the numerical evaluation of Fredholm determinants ... 871
Bin Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets ... 917
F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and H. Woźniakowski, On decompositions of multivariate functions .. 953
Stefano Capparelli, Alberto Del Fra, and Carlo Scibò, On the span of polynomials with integer coefficients .. 967
Grzegorz W. Wasilkowski and Henryk Woźniakowski, On the exponent of discrepancies ... 983
Josef Dick and Peter Kritzer, Duality theory and propagation rules for generalized digital nets .. 993
(Continued on inside back cover)