Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle

Authors: Huiyuan Li and Jie Shen
Journal: Math. Comp. 79 (2010), 1621-1646
MSC (2000): Primary 65N35, 65N22, 65F05, 35J05
Published electronically: September 17, 2009
MathSciNet review: 2630005
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Spectral approximations on the triangle by orthogonal polynomials are studied in this paper. Optimal error estimates in weighted semi-norms for both the $ L^2-$ and $ H^1_0-$orthogonal polynomial projections are established by using the generalized Koornwinder polynomials and the properties of the Sturm-Liouville operator on the triangle. These results are then applied to derive error estimates for the spectral-Galerkin method for second- and fourth-order equations on the triangle. The generalized Koornwinder polynomials and approximation results developed in this paper will be useful for many other applications involving spectral and spectral-element approximations in triangular domains.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, editors.
    Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
    Dover, 1972.MR 1225604 (94b:00012)
  • 2. P. Appell.
    Sur des polynômes de deux variables analogues aux polynômes de Jacobi.
    Arch. Math. Phys., 66:238-245, 1881.
  • 3. P. Appell and J. Kampeé de Fériet.
    Fonctions Hypergéométriques et Hypersphériques: Polynomes d'Hermite.
    Gauthier-Villars, Paris, 1926.
  • 4. I. Babuška and Manil Suri.
    The optimal convergence rate of the $ p$-version of the finite element method.
    SIAM J. Numer. Anal., 24(4):750-776, 1987. MR 899702 (88k:65102)
  • 5. Dietrich Braess and Christoph Schwab.
    Approximation on simplices with respect to weighted Sobolev norms.
    J. Approx. Theory, 103(2):329-337, 2000. MR 1749969 (2001f:41038)
  • 6. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang.
    Spectral Methods: Fundamentals in Single Domains.
    Scientific Computation. Springer-Verlag, Berlin, 2006. MR 2223552 (2007c:65001)
  • 7. Moshe Dubiner.
    Spectral methods on triangles and other domains.
    J. Sci. Comput., 6(4):345-390, 1991. MR 1154903 (92k:76061)
  • 8. Charles F. Dunkl and Yuan Xu.
    Orthogonal Polynomials of Several Variables.
    Cambridge University Press, 2001. MR 1827871 (2002m:33001)
  • 9. D. Funaro.
    Polynomial Approximations of Differential Equations.
    Springer-Verlag, 1992. MR 1176949 (94c:65078)
  • 10. A. Grundmann and H. M. Möller.
    Invariant integration formulas for the $ n-$simplex by combinatorial methods.
    SIAM J. Numer. Anal., 15:282-290, 1978. MR 488881 (81e:41045)
  • 11. Ben-Yu Guo, Jie Shen, and Li-Lian Wang.
    Optimal spectral-Galerkin methods using generalized Jacobi polynomials.
    J. Sci. Comput., 27(1-3):305-322, 2006. MR 2285783 (2008f:65233)
  • 12. Ben-Yu Guo, Jie Shen, and Li-Lian Wang.
    Generalized Jacobi polynomials/functions and applications to spectral methods.
    Appl. Numer. Math., 59(5):1011-1028, 2009.
  • 13. Benyu Guo and Li-Lian Wang.
    Error analysis of spectral method on a triangle.
    Adv. Comput. Math., 26:473-496, 2007. MR 2291668 (2007k:41008)
  • 14. Wilhelm Heinrichs.
    Spectral collocation on triangular elements.
    J. Comput. Phys., 145(2):743-757, 1998. MR 1645013 (99d:65332)
  • 15. J. Hesthaven and D. Gottlieb.
    Stable spectral methods for conservation laws on triangles with unstructured grids.
    Comput. Methods Appl. Mech. Eng., 175:361-381, 1999. MR 1702193 (2000e:65096)
  • 16. George Em Karniadakis and Spencer J. Sherwin.
    Spectral/$ hp$ element methods for computational fluid dynamics.
    Numerical Mathematics and Scientific Computation. Oxford University Press, New York, second edition, 2005. MR 2165335 (2006j:65001)
  • 17. Tom Koornwinder.
    Two-variable analogues of the classical orthogonal polynomials.
    In Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pages 435-495. Math. Res. Center, Univ. Wisconsin, Publ. No. 35. Academic Press, New York, 1975. MR 0402146 (53:5967)
  • 18. Heping Ma and Weiwei Sun.
    A Legendre-Petrov-Galerkin method and Chebyshev-collocation method for the third-order differential equations.
    SIAM J. Numer. Anal., 38(5):1425-1438, 2000. MR 1812518 (2001m:65130)
  • 19. S. A. Orszag.
    Spectral methods for complex geometries.
    J. Comput. Phys., 37:70-92, 1980. MR 584322 (83e:65188)
  • 20. R. G. Owens.
    Spectral approximations on the triangle.
    R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 454(1971):857-872, 1998. MR 1631583 (99i:33028)
  • 21. C. Schwab.
    p- and hp- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics.
    Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York, 1998. MR 1695813 (2000d:65003)
  • 22. Jie Shen, Li-Lian Wang, and Huiyuan Li.
    A triangular spectral element method using fully tensorial rational basis functions.
    SIAM J. Numer. Anal., 47(3):1619-1650, 2009.
  • 23. S. J. Sherwin and G. E. Karniadakis.
    A new triangular and tetrahedral basis for high-order finite element methods.
    Int. J. Numer. Methods Engrg., 38:3775-3802, 1995. MR 1362003 (96h:65140)
  • 24. S. J. Sherwin and G. E. Karniadakis.
    A triangular spectral element method; applications to the incompressible Navier-Stokes equations.
    Comput. Methods Appl. Mech. Engrg., 123(1-4):189-229, 1995. MR 1339373 (96b:76069)
  • 25. A. H. Stroud.
    Integration formulas and orthogonal polynomials for two variables.
    SIAM J. Numer. Anal., 1969. MR 0261788 (41:6400)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 65N35, 65N22, 65F05, 35J05

Retrieve articles in all journals with MSC (2000): 65N35, 65N22, 65F05, 35J05

Additional Information

Huiyuan Li
Affiliation: Institute of Software, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

Jie Shen
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana, 47907

Keywords: Orthogonal polynomials, Koornwinder polynomials, error estimate, spectral method
Received by editor(s): August 12, 2008
Received by editor(s) in revised form: June 1, 2009
Published electronically: September 17, 2009
Additional Notes: The first author was partially supported by the NSFC grants 10601056, 10431050 and 60573023.
The second author was partially supported by the NFS grant DMS-0610646 and AFOSR FA9550-08-1-0416.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society