Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some completely monotonic functions of positive order


Authors: Stamatis Koumandos and Martin Lamprecht
Journal: Math. Comp. 79 (2010), 1697-1707
MSC (2010): Primary 33B15; Secondary 26D20, 26D15
DOI: https://doi.org/10.1090/S0025-5718-09-02313-8
Published electronically: November 9, 2009
MathSciNet review: 2630008
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We completely determine the set of $ (\alpha,\beta)\in\mathbb{R}^2$ for which the function $ \frac{e^{\alpha x} - e^{\beta x}}{e^x -1}$ is convex on $ (0,\infty)$ and use this result to give some special classes of completely monotonic functions of positive order related to gamma and psi functions.


References [Enhancements On Off] (What's this?)

  • 1. J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes. Compositio Math. 7 (1939), 96-111. MR 0000436 (1:73h)
  • 2. H. van Haeringen, Completely monotonic and related functions. J. Math. Anal. Appl. 204 (1996), 389-408. MR 1421454 (97j:26010)
  • 3. KETpic for Maple. Available online at www.kisarazu.ac.jp/˜masa/math/.
  • 4. S. Koumandos, Monotonicity of some functions involving the Gamma and Psi functions, Math. Comp. 77 (2008), 2261-2275. MR 2429884
  • 5. S. Koumandos and M. Lamprecht, On a conjecture for trigonometric sums and starlike functions II, submitted.
  • 6. S. Koumandos and H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl. 355(1) (2009) 33-40.
  • 7. S. Koumandos and S. Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions. Constr. Approx. 23 (2006), no. 2, 197-210. MR 2186305 (2007b:42001)
  • 8. S. Koumandos and S. Ruscheweyh, On a conjecture for trigonometric sums and starlike functions. J. Approx. Theory 149, (2007), no. 1, 42-58. MR 2371613 (2009f:42001)
  • 9. F. Qi, Bounds for the ratio of two gamma function, arXiv:0902.2514v1 [math.CA].
  • 10. S. Y. Trimble, J. Wells, and F. T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal. 20 no. 5 (1989), 1255-1259. MR 1009357 (91a:26019)
  • 11. D. V. Widder, The Laplace transform. Princeton University Press, Princeton, 1946. MR 0005923 (3:232d)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 33B15, 26D20, 26D15

Retrieve articles in all journals with MSC (2010): 33B15, 26D20, 26D15


Additional Information

Stamatis Koumandos
Affiliation: Department of Mathematics and Statistics, The University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
Email: skoumand@ucy.ac.cy

Martin Lamprecht
Affiliation: Department of Mathematics and Statistics, The University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
Email: martin@ucy.ac.cy

DOI: https://doi.org/10.1090/S0025-5718-09-02313-8
Keywords: Gamma function, psi function, completely monotonic functions
Received by editor(s): May 7, 2009
Received by editor(s) in revised form: June 16, 2009
Published electronically: November 9, 2009
Additional Notes: The research for this paper has been supported by the Leventis Foundation (Grant no. 3411-21041).
The authors would like to thank Setsuo Takato for his help with KETpic.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society