Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Grassmannian spectral shooting

Authors: Veerle Ledoux, Simon J. A. Malham and Vera Thümmler
Journal: Math. Comp. 79 (2010), 1585-1619
MSC (2010): Primary 65L15, 65L10
Published electronically: January 25, 2010
MathSciNet review: 2630004
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a new numerical method for computing the pure-point spectrum associated with the linear stability of coherent structures. In the context of the Evans function shooting and matching approach, all the relevant information is carried by the flow projected onto the underlying Grassmann manifold. We show how to numerically construct this projected flow in a stable and robust manner. In particular, the method avoids representation singularities by, in practice, choosing the best coordinate patch representation for the flow as it evolves. The method is analytic in the spectral parameter and of complexity bounded by the order of the spectral problem cubed. For large systems it represents a competitive method to those recently developed that are based on continuous orthogonalization. We demonstrate this by comparing the two methods in three applications: Boussinesq solitary waves, autocatalytic travelling waves and the Ekman boundary layer.

References [Enhancements On Off] (What's this?)

  • 1. H. Abou-Kandil, G. Freiling, V. Ionescu and G. Jank, Matrix Riccati equations in control and systems theory, Systems and control: Foundations and applications, Birkhäuser, 2003. MR 1997753 (2004g:93002)
  • 2. J.C. Alexander, R. Gardner, and C.K.R.T. Jones, A topological invariant arising in the stability analysis of travelling waves, J. Reine Angew. Math. 410 (1990), pp. 167-212. MR 1068805 (92d:58028)
  • 3. J.C. Alexander and R. Sachs, Linear stability of solitary waves of a Boussinesq-type equation: A computer assisted computation, Nonlinear World 2 (1995), pp. 471-507. MR 1360872 (96h:35172)
  • 4. L. Allen, Modelling dolphin hydrodynamics: The numerical analysis and hydrodynamic stability of flow past compliant surfaces, Ph.D. Thesis, University of Surrey, 2001.
  • 5. L. Allen and T.J. Bridges, Numerical exterior algebra and the compound matrix method, Numer. Math. 92(2) (2002), pp. 131-149. MR 1922919 (2003j:65073)
  • 6. L. Allen and T.J. Bridges, Hydrodynamic stability of the Ekman boundary layer including interaction with a compliant surface: A numerical framework, Eur. J. Mech. B Fluids, 22(3) (2003), pp. 239-358. MR 1991025 (2004g:76065)
  • 7. N.D. Aparicio, S.J.A. Malham and M. Oliver, Numerical evaluation of the Evans function by Magnus integration, BIT 45 (2005), pp. 219-258. MR 2176193 (2006j:65158)
  • 8. N.J. Balmforth, R.V. Craster and S.J.A. Malham, Unsteady fronts in an autocatalytic system, Proc. R. Soc. London A. 455 (1999), pp. 1401-1433. MR 1701752 (2000d:80013)
  • 9. J. Billingham and D. Needham, The development of travelling waves in quadratic and cubic autocatalysis with unequal diffusion rates, I and II, Phil. Trans. R. Soc. London A, 334 (1991), pp. 1-124, and 336 (1991), pp. 497-539. MR 1155096 (92m:80020); MR 1133118 (93a:80012)
  • 10. S. Billey, Grassmannians and other Schubert varieties, talk, April 14, 2007.
  • 11. D.S. Bindel, J. Demmel and M. Friedman, Continuation of invariant subspaces for large bifurcation problems, SIAM J. Sci. Comp. 30(2) (2008), pp. 637-656. MR 2385879 (2009b:37155)
  • 12. S. Bittanti, A.J. Laub and J.C. Willems (Eds.), The Riccati equation, Springer-Verlag, 1991. MR 1132048 (92d:93008)
  • 13. Å. Björck and G.H. Golub, Numerical methods for computing angles between linear subspaces, Math. Comp. 27(123) (1973), pp. 579-594. MR 0348991 (50:1485)
  • 14. T.J. Bridges, G. Derks and G. Gottwald, Stability and instability of solitary waves of the fifth-order KdV equation: A numerical framework, Physica D 172(1-4) (2002), pp. 190-216. MR 1946769 (2004i:37148)
  • 15. T.J. Bridges and S. Reich, Computing Lyapunov exponents on a Stiefel manifold, Physica D 156 (3-4) (2001), pp. 213-238. MR 1850782 (2002h:37169)
  • 16. L.Q. Brin, Numerical testing of the stability of viscous shock waves, Ph.D. Thesis, Indiana University, Bloomington, 1998.
  • 17. L.Q. Brin, Numerical testing of the stability of viscous shock waves, Math. of Comput. 70(235) (2000), pp. 1071-1088. MR 1710652 (2001j:65118)
  • 18. R.W. Brockett and C.I. Byrnes, Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint, IEEE Trans. Automat. Control 26(1) (1981), pp. 271-284. MR 609265 (82i:93033b)
  • 19. E. Celledoni and A. Iserles, Approximating the exponential from a Lie algebra to a Lie group, Math. Comp. 69 (2000), pp. 1457-1480. MR 1709149 (2001a:22007)
  • 20. E. Celledoni and B. Owren, On the implementation of Lie group methods on the Stiefel manifold, Numer. Algorithms 32 (2003), pp. 163-183. MR 1989365 (2004e:65071)
  • 21. H.-C. Chang, E.A. Demekhin and D.I. Kopelevich, Local stability theory of solitary pulses in an active medium, Physica D 97 (1996), pp. 353-375.
  • 22. S.S. Chern, Complex manifolds without potential theory, Van Nostrand Mathematical Studies #15, 1967. MR 0225346 (37:940)
  • 23. C.-C. Chou and R.E. Wyatt, Computational method for the quantum Hamilton-Jacobi equation: Bound states in one dimension, J. Chem. Phys. 125(174103) (2006), pp. 1-10.
  • 24. C.-C. Chou and R.E. Wyatt, Riccati differential equation for quantum mechanical bound states: Comparison of numerical integrators, Int. J. Quant. Chem. 108 (2008), pp.238-248.
  • 25. S. Coombes and M. R. Owen, Evans functions for integral neural field equations with Heaviside firing rate function, SIAM J. Appl. Dyn. Syst. 3 (2004), pp. 574-600. MR 2111240 (2005k:92008)
  • 26. I. Coskun, Grassmannians: The first example of a moduli space, MIT Open Course Ware available at
  • 27. J. Deng and S. Nii, Infinite-dimensional Evans function theory for elliptic eigenvalue problems in a channel, J. Differential Equations 225 (2006), pp. 57-89. MR 2228692 (2007b:35086)
  • 28. G. Derks, U. Ebert and B. Meulenbroek, Laplacian instability of planar streamer ionization fronts - an example of pulled front analysis, Journal Nonlinear Science 18 (2008), pp. 551-590. MR 2448541
  • 29. A. Dhooge, W. Govaerts and Y.A. Kuznetsov, MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Software, 29(2) (2003), pp. 141-164. MR 2000880 (2004h:65135)
  • 30. L. Dieci and E.S. Van Vleck, Orthonormal integrators based on Householder and Givens transformations, Future Generation Computer Systems 19(3) (2003) Special issue: Geometric numerical algorithms, pp. 363-373.
  • 31. A. Doelman, R.A. Gardner and T.J. Kaper, Stability analysis of singular patterns in the $ 1$D Gray-Scott model: A matched asymptotics approach, Physica D 122 (1998), pp. 1-36. MR 1650111 (2000i:37136)
  • 32. L.O. Drury, Numerical solution of Orr-Sommerfeld-type equations, J. Comput. Phys. 37(1) (1980), pp. 133-139. MR 584325 (81h:65082)
  • 33. A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM. J. Matrix Anal. Appl. 20(2) (1998), pp. 303-353. MR 1646856 (99h:65075)
  • 34. J.W. Evans, Nerve axon equations, IV: The stable and unstable impulse, Indiana Univ. Math. J. 24 (1975), pp. 1169-1190. MR 0393891 (52:14698)
  • 35. W. Fulton, Young tableaux, London Mathematical Society Student Texts 35, Cambridge University Press, 1997. MR 1464693 (99f:05119)
  • 36. F. Gesztesy, Y. Latushkin and K.A. Makarov, Evans functions, Jost functions, and Fredholm determinants, Arch. Rational Mech. Anal. 186 (2007), pp. 361-421. MR 2350362 (2008k:34209)
  • 37. F. Gesztesy, Y. Latushkin and K. Zumbrun, Derivatives of (modified) Fredholm determinants and stability of standing and travelling waves, arXiv:0802.1665v1, 12 Feb 2008. J. Math. Pures Appl. (9) 90 (2008), pp. 160-200. MR 2437809
  • 38. S.K. Gray and D.E. Manopoulous, Symplectic integrators tailored to the time-dependent Schrödinger equation, J. Chem. Phys. 104(18) (1996), pp. 7099-7112.
  • 39. J. Greenberg and M. Marletta, Numerical solution of non-self-adjoint Sturm-Liouville problems and related systems, SIAM J. Numer. Anal. 38(6) (2000), pp. 1800-1845. MR 1856233 (2002g:65086)
  • 40. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library Edition, 1994. MR 1288523 (95d:14001)
  • 41. V. Gubernov, G.N. Mercer, H.S. Sidhu and R.O. Weber, Evans function stability of non-adiabatic combustion waves, Proc. R. Soc. London A 460 (2004), pp. 2415-2435. MR 2073926 (2005f:80012)
  • 42. E. Hairer, C.  Lubich and G.  Wanner, Geometric Numerical Integration, Springer Series in Computational Mathematics, 2002. MR 1904823 (2003f:65203)
  • 43. D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, 1981. MR 610244 (83j:35084)
  • 44. R. Hermann and C. Martin, Applications of Algebraic geometry to systems theory - part I, IEEE Trans. Automat. Control 22(1) (1977), pp. 19-25. MR 0444172 (56:2530)
  • 45. R. Hermann and C. Martin, Lie theoretic aspects of the Riccati equation, NASA Report WP2-3:30.
  • 46. R. Hermann and C. Martin, Periodic solutions of the Riccati equation, NASA Report TP3-3:00, IEEE (1980).
  • 47. R. Hermann and C. Martin, Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, I: General Lie-theoretic methods, Mathematical Systems Theory 15 (1982), pp. 277-284. MR 667827 (83m:58068)
  • 48. R. Hermann and C. Martin, Lie and Morse theory for periodic orbits of vector fields and matrix Riccati equations, II, Mathematical Systems Theory 16 (1983), pp. 297-306. MR 721102 (85f:58098)
  • 49. J. Humpherys and K. Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems, Physica D 220 (2006), pp. 116-126. MR 2253406 (2007e:35006)
  • 50. J. Humpherys, B. Sandstede and K. Zumbrun, Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems, Numer. Math. 103(4) (2006), pp. 631-642. MR 2221065 (2007a:65028)
  • 51. J.M. Hutson, Coupled channel methods for solving the bound-state Schrödinger equation, Computer Physics Communications 84 (1994), pp. 1-18.
  • 52. A. Iserles, A. Marthinsen and S.P. Nørsett, On the implementation of the method of Magnus series for linear differential equations, BIT 39(2) (1999), pp. 281-304. MR 1697681 (2000g:65067)
  • 53. A. Iserles and A. Zanna, Efficient computation of the matrix exponential by generalized polar decompositions, SIAM J. Numer. Anal. 42(5) (2005), pp. 2218-2256. MR 2139245 (2006b:65065)
  • 54. A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta Numer. (2000), pp. 215-365. MR 1883629 (2003a:37123)
  • 55. L.Gr. Ixaru, Special techniques related to the CP methods for the coupled channel Schrödinger equation, talk given at Workshop Numerical Approach of Oscillatory functions 2008, Ghent.
  • 56. B.R. Johnson, New numerical methods applied to solving the one-dimensional eigenvalue problem, J. Chem. Phys. 67(9) (1977), pp. 4086-4093.
  • 57. T. Kapitula and B. Sandstede, A novel instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg-Landau equation, J. Opt. Soc. Amer. B 15 (1998), pp. 2757-2762. MR 1699233 (2000c:78023)
  • 58. S.L. Kleiman and D. Laksov, Schubert calculus, Amer. Math. Monthly 79(10) (1972), pp. 1061-1082. MR 0323796 (48:2152)
  • 59. Y. Kodama, Young diagrams and $ N$-soliton solutions of the KP equation, J. Phys. A: Math. Gen. 37 (2004), pp. 11169-11190. MR 2101933 (2005f:37156)
  • 60. A. Kresch, Flag varieties and Schubert calculus, Algebraic Groups, Göttingen, 2007, pp. 73-86. MR 2309940 (2008d:14088)
  • 61. S. Krogstad, A low complexity Lie group method on the Stiefel manifold, Reports in Informatics, ISSN 0333-3590, 2001.
  • 62. S. Lafortune and J. Lega, Instability of local deformations of an elastic rod, Physica D 182 (2003), pp. 103-124. MR 2002861 (2004f:74053)
  • 63. S. Lafortune and P. Winternitz, Superposition formulas for pseudounitary Riccati equations, J. Math. Phys. 37 (1996). pp. 1539-1550. MR 1377650 (96j:34011)
  • 64. V. Ledoux, Study of special algorithms for solving Sturm-Liouville and Schrödinger equations. Ph.D. Thesis, Universiteit Gent, 2007.
  • 65. V. Ledoux, M. Van Daele and G. Vanden Berghe, A numerical procedure to solve the multichannel Schrödinger eigenvalue problem, Comp. Phys. Commun. 176 (2007), pp. 191-199.
  • 66. V. Ledoux, S.J.A. Malham, J. Niesen and V. Thümmler, Computing stability of multi-dimensional travelling waves, SIADS 8(1) (2009), pp. 480-507. MR 2496765
  • 67. J.C. Light and R.B. Walker, An R matrix approach to the solution of coupled equations for atom-molecule reactive scattering, J. Chem. Phys. 65(10) (1976), p. 4272-4282.
  • 68. W. Magnus, On the exponential solution of differential equations for a linear operator, Comm. Pure Appl. Math., 7 (1954), pp. 649-673. MR 0067873 (16:790a)
  • 69. D.E. Manopoulous and S.K.  Gray, Symplectic integrators for the multichannel Schrödinger equation, J. Chem. Phys. 102(23) (1995), pp. 9214-9227.
  • 70. J. E. Marsden and T. S. Ratiu, Introduction to mechanics and symmetry, Second edition, Springer, 1999. MR 1723696 (2000i:70002)
  • 71. C. Martin and R. Hermann, Applications of algebraic geometry to systems theory, III. The McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants, SIAM J. Control Optim. 16(5) (1978), pp. 743-755. MR 0527294 (58:26209b)
  • 72. M.J. Metcalf, J.H. Merkin and S.K. Scott, Oscillating wave fronts in isothermal chemical systems with arbitrary powers of autocatalysis, Proc. R. Soc. London A 447 (1994), pp. 155-174. MR 1303323 (95g:80015)
  • 73. C. Meyer, Matrix analysis and applied linear algebra, SIAM, 2000. MR 1777382
  • 74. J.W. Milnor and J.D. Stasheff, Characteristic classes, Annals of Mathematics Studies 76, Princeton University Press, 1974. MR 0440554 (55:13428)
  • 75. C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later, SIAM Rev. 45 (2003), pp. 3-49. MR 1981253 (2004d:15012)
  • 76. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, American Mathematical Society, 2002. MR 1867362 (2002m:53045)
  • 77. H. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29 (1999), pp. 115-127. MR 1662814 (99i:65075)
  • 78. H. Munthe-Kaas and A. Zanna, Generalized polar decompositions for the approximation of the matrix exponential, SIAM J. Matrix Anal. Applic. 23(3) (2002), pp. 840-862. MR 1896821 (2003e:65066)
  • 79. S. Nii, An extension of the stability index for travelling-wave solutions and its application to bifurcations, SIAM J. Math. Anal. 28(2) (1997), pp. 402-433. MR 1434043 (98b:35093)
  • 80. E. Oja, A Simplified Neuron Model as a Principal Component Analyzer, J. Math. Biology 15 (1982), pp. 267-273. MR 684939 (84c:92023)
  • 81. P.J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, 1995. MR 1337276 (96i:58005)
  • 82. R.L. Pego and M.I. Weinstein, Eigenvalues and instabilities of solitary waves, Philos. Trans. R. Soc. London A 340 (1992), pp. 47-94. MR 1177566 (93g:35115)
  • 83. A. Postnikov, Total positivity, Grassmannians, and Networks, arXiv:math/060976v1 27 Sep 2006.
  • 84. H. Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung Stetiger Funktionen, Math. Ann. 95 (1923), pp. 499-518. MR 1512291
  • 85. J.D. Pryce, Numerical solution of Sturm-Liouville problems, Monographs of Numerical Analysis, Oxford Science Publications, Clarendon Press, 1993. MR 1283388 (95h:65056)
  • 86. M.S. Ravi, J. Rosenthal and X. Wang, Dynamic pole assignment and Schubert calculus, SIAM J. Control Optim. 34(3) (1996), pp. 813-832. MR 1384954 (97c:93051)
  • 87. J. Rosenthal, The Hermann-Martin curve, preprint report.
  • 88. B. Sandstede, Stability of travelling waves, In Handbook of Dynamical Systems II, B. Fiedler, ed., Elsevier (2002), pp. 983-1055. MR 1901069 (2004e:37121)
  • 89. B. Sandstede and A. Scheel, Curvature effects on spiral spectra: Generation of point eigenvalues near branch points, Phys. Rev. E 73 106217, 2006. MR 2223064 (2007c:37094)
  • 90. J. Schiff and S. Shnider, A natural approach to the numerical integration of Riccati differential equations, SIAM J. Numer. Anal. 36(5) (1999), pp. 1392-1413. MR 1706774 (2000d:34024)
  • 91. C.R. Schneider, Global aspects of the matrix Riccati equation, Theory of Computing Systems 7(3) (1973), pp. 281-286. MR 0391175 (52:11997)
  • 92. M.A. Shayman, Phase portrait of the matrix Riccati equation, SIAM J. Control Optim. 24(1) (1986), pp. 1-65. MR 818936 (87g:58064)
  • 93. F. Sottile, Rational curves on Grassmannians: Systems theory, reality, and transversality, In ``Advances in Algebraic Geometry Motivated by Physics'', ed. by Emma Previato, Contemporary Mathematics 276 (2001), pp. 9-42. MR 1837108 (2002d:14080)
  • 94. N. Steenrod, The topology of fibre bundles, Princeton University Press, 1951. MR 0039258 (12:522b)
  • 95. J. Swinton and J. Elgin, Stability of travelling pulse solutions to a laser equation, Phys. Lett. A 145(8-9) (1990), pp.428-433. MR 1052867 (91c:81190)
  • 96. D. Terman, Stability of planar wave solutions to a combustion model, SIAM J. Math. Anal., 21 (1990), pp. 1139-1171. MR 1062397 (91f:35138)
  • 97. F.W. Warner, Foundations of differentiable manifolds and Lie groups, Graduate Texts in Mathematics, Springer, 1983. MR 722297 (84k:58001)
  • 98. W-Y. Yan, U. Helmke and J.B. Moore, Global analysis of Oja's flow for neural networks, IEEE Transactions on Neural Networks 5(5) (1994), pp. 674-683.
  • 99. X. Ying and I. Katz, A reliable argument principle algorithm to find the number of zeros of an analytic function in a bounded domain, Numer. Math. 53 (1988), pp. 143-163. MR 946373 (89g:65068)
  • 100. M.I. Zelikin, Control theory and optimization I: Homogeneous spaces and the Riccati equation in the calculus of variations, Encyclopaedia of Mathematical Sciences, Volume 86, Springer-Verlag 2000. MR 1739679 (2001a:49002)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65L15, 65L10

Retrieve articles in all journals with MSC (2010): 65L15, 65L10

Additional Information

Veerle Ledoux
Affiliation: Vakgroep Toegepaste Wiskunde en Informatica, Ghent University, Krijgslaan, 281-S9, B-9000 Gent, Belgium

Simon J. A. Malham
Affiliation: Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

Vera Thümmler
Affiliation: Fakultät für Mathematik, Universität Bielefeld, 33501 Bielefeld, Germany

Keywords: Grassmann manifolds, spectral theory, numerical shooting
Received by editor(s): September 3, 2008
Received by editor(s) in revised form: July 6, 2009
Published electronically: January 25, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society