Advances in the theory of box integrals

Authors:
D. H. Bailey, J. M. Borwein and R. E. Crandall

Journal:
Math. Comp. **79** (2010), 1839-1866

MSC (2010):
Primary 11Y60; Secondary 28-04

DOI:
https://doi.org/10.1090/S0025-5718-10-02338-0

Published electronically:
February 9, 2010

MathSciNet review:
2630017

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Box integrals--expectations or over the unit -cube--have over three decades been occasionally given closed forms for isolated . By employing experimental mathematics together with a new, global analytic strategy, we prove that for each of dimensions the box integrals are for any integer hypergeometrically closed (``hyperclosed'') in an explicit sense we clarify herein. For dimensions, such a complete hyperclosure proof is blocked by a single, unresolved integral we call ; although we do prove that all but a finite set of () cases enjoy hyperclosure. We supply a compendium of exemplary closed forms that arise naturally from the theory.

**1.**R. S. Anderssen, R. P. Brent, D. J. Daley, and P. A. P. Moran,*Concerning ∫¹₀^{…}∫¹₀(𝑥²₁+^{…}+𝑥²_{𝑘})^{1/2}𝑑𝑥₁^{…}𝑑𝑥_{𝑘} and a Taylor series method*, SIAM J. Appl. Math.**30**(1976), no. 1, 22–30. MR**0394974**, https://doi.org/10.1137/0130003**2.**M. Abramowitz and I.A. Stegun,*Handbook of Mathematical Functions*, NBS (now NIST), 1965. See also`http://dlmf.nist.gov/.`**3.**David H. Bailey and Jonathan M. Borwein, ``Highly parallel, high-precision numerical integration,''*Int. Journal of Computational Science and Engineering*, accepted Jan. 2008. Available at`http://crd.lbl.gov/˜dhbailey/dhbpapers/quadparallel.pdf`.**4.**David H. Bailey and Jonathan M. Borwein, ``Effective error bounds for Euler-Maclaurin-based quadrature schemes,''*20th Annual HPCS Proceedings*, IEEE CD, May 2006. Available at`http://crd.lbl.gov/˜dhbailey/dhbpapers/em-error.pdf`.**5.**D. H. Bailey, J. M. Borwein, and R. E. Crandall,*Box integrals*, J. Comput. Appl. Math.**206**(2007), no. 1, 196–208. MR**2337437**, https://doi.org/10.1016/j.cam.2006.06.010**6.**D. H. Bailey, J. M. Borwein, and R. E. Crandall,*Integrals of the Ising class*, J. Phys. A**39**(2006), no. 40, 12271–12302. MR**2261886**, https://doi.org/10.1088/0305-4470/39/40/001**7.**David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor, and Eric W. Weisstein,*Ten problems in experimental mathematics*, Amer. Math. Monthly**113**(2006), no. 6, 481–509. MR**2231135**, https://doi.org/10.2307/27641975**8.**David H. Bailey and David J. Broadhurst,*Parallel integer relation detection: techniques and applications*, Math. Comp.**70**(2001), no. 236, 1719–1736. MR**1836930**, https://doi.org/10.1090/S0025-5718-00-01278-3**9.**David H. Bailey, Karthik Jeyabalan, and Xiaoye S. Li,*A comparison of three high-precision quadrature schemes*, Experiment. Math.**14**(2005), no. 3, 317–329. MR**2172710****10.**David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, ``ARPREC: An arbitrary precision computation package,'' September 2002. Available at`http://crd.lbl.gov/˜dhbailey/dhbpapers/arprec.pdf`.**11.**Jonathan Borwein and David Bailey,*Mathematics by experiment*, 2nd ed., A K Peters, Ltd., Wellesley, MA, 2008. Plausible reasoning in the 21st Century. MR**2473161****12.**Jonathan M. Borwein and Bruno Salvy,*A proof of a recurrence for Bessel moments*, Experiment. Math.**17**(2008), no. 2, 223–230. MR**2433887****13.**Chaunming Zong,*The Cube-A Window to Convex and Discrete Geometry*, Cambridge Tracts in Mathematics, 2006.**14.**R.E. Crandall, C. Joe, and T. Mehoke, ``On the fractal distribution of brain synapses,'' manuscript, 2009.**15.**Helaman R. P. Ferguson, David H. Bailey, and Steve Arno,*Analysis of PSLQ, an integer relation finding algorithm*, Math. Comp.**68**(1999), no. 225, 351–369. MR**1489971**, https://doi.org/10.1090/S0025-5718-99-00995-3**16.**Wolfram Koepf,*Hypergeometric summation*, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1998. An algorithmic approach to summation and special function identities. MR**1644447****17.**G. Lamb,``An evaluation of the integral ,'' ``A method of evaluating the integral ,'' and ``An approach to evaluating the integral ,'' preprint collection, 2006.**18.**G. Lamb,``An evaluation of the integral ,'' and ``An approach to evaluating the integral ,'' preprint collection, 2009.**19.**Leonard Lewin,*Polylogarithms and associated functions*, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR**618278****20.**Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,*LINPACK User's Guide*, SIAM, Philadelphia, 1979.**21.**J. Philip, ``The distance between two random points in a 4- and 5-cube,'' preprint, 2008.**22.**D. Robbins, ``Average distance between two points in a box,''*Amer. Mathematical Monthly*,**85**(1978), 278.**23.**Charles Schwartz,*Numerical integration of analytic functions*, J. Computational Phys.**4**(1969), 19–29. MR**0243741****24.**Hidetosi Takahasi and Masatake Mori,*Quadrature formulas obtained by variable transformation*, Numer. Math.**21**(1973/74), 206–219. MR**0331738**, https://doi.org/10.1007/BF01436624**25.**M. Trott, Private communication, 2005.**26.**M. Trott, ``The area of a random triangle,''*Mathematica Journal*,**7**(1998), 189-198.**27.**E. Weisstein, ``Hypercube line picking.'' Available at`http://mathworld.wolfram.com/``HypercubeLinePicking.html`.

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
11Y60,
28-04

Retrieve articles in all journals with MSC (2010): 11Y60, 28-04

Additional Information

**D. H. Bailey**

Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, California 94720

Email:
dhbailey@lbl.gov

**J. M. Borwein**

Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia and Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada

Email:
jonathan.borwein@newcastle.edu.au, jborwein@cs.dal.ca

**R. E. Crandall**

Affiliation:
Center for Advanced Computation, Reed College, Portland, Oregon

Email:
crandall@reed.edu

DOI:
https://doi.org/10.1090/S0025-5718-10-02338-0

Received by editor(s):
March 3, 2009

Received by editor(s) in revised form:
August 13, 2009

Published electronically:
February 9, 2010

Additional Notes:
The first author was supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231.

The second author was supported in part by ARC, NSERC and the Canada Research Chair Programme.

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.