Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Entropy-satisfying relaxation method with large time-steps for Euler IBVPs


Authors: Frédéric Coquel, Quang Long Nguyen, Marie Postel and Quang Huy Tran
Journal: Math. Comp. 79 (2010), 1493-1533
MSC (2010): Primary 65M08; Secondary 35L04
DOI: https://doi.org/10.1090/S0025-5718-10-02339-2
Published electronically: February 23, 2010
MathSciNet review: 2630001
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper could have been given the title: ``How to positively and implicitly solve Euler equations using only linear scalar advections.'' The new relaxation method we propose is able to solve Euler-like systems--as well as initial and boundary value problems--with real state laws at very low cost, using a hybrid explicit-implicit time integration associated with the Arbitrary Lagrangian-Eulerian formalism. Furthermore, it possesses many attractive properties, such as: (i) the preservation of positivity for densities; (ii) the guarantee of min-max principle for mass fractions; (iii) the satisfaction of entropy inequality, under an expressible bound on the CFL ratio. The main feature that will be emphasized is the design of this optimal time-step, which takes into account data not only from the inner domain but also from the boundary conditions.


References [Enhancements On Off] (What's this?)

  • 1. A. A. Amsden, P. J. O'Rourke, and T. D. Butler, KIVA-II: A computer program for chemically reactive flows with sprays, Report LA-11560-MS, Los Alamos National Laboratory, 1989.
  • 2. N. Andrianov, F. Coquel, M. Postel, and Q. H. Tran, A relaxation multiresolution scheme for accelerating realistic two-phase flows calculations in pipelines, Int. J. Numer. Meth. Fluids 54 (2007), 207-236. MR 2313539 (2008e:76119)
  • 3. M. Baudin, C. Berthon, F. Coquel, R. Masson, and Q. H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law, Numer. Math. 99 (2005), 411-440. MR 2117734 (2005h:76079)
  • 4. M. Baudin, F. Coquel, and Q. H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline, SIAM J. Sci. Comput. 27 (2005), no. 3, 914-936. MR 2199914 (2006k:76092)
  • 5. François Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math. 94 (2003), 623-672. MR 1990588 (2005e:65129)
  • 6. -, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser, 2004. MR 2128209 (2005m:65002)
  • 7. C. Chalons and F. Coquel, Navier-Stokes equations with several independent pressure laws and explicit predictor-corrector schemes, Numer. Math. 101 (2005), no. 3, 451-478. MR 2194824 (2006m:76119)
  • 8. Jean Jacques Chattot and Sylvie Mallet, A ``box-scheme'' for the Euler equations, Nonlinear Hyperbolic Problems (Berlin) (C. Carasso, P. A. Raviart, and D. Serre, eds.), Lecture Notes in Mathematics, vol. 1270, Springer-Verlag, 1987, pp. 82-102. MR 0910106 (88h:76002)
  • 9. Gui Qiang Chen, C. David Levermore, and Tai Ping Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math. 47 (1994), no. 6, 787-830. MR 1280989 (95h:35133)
  • 10. Frédéric Coquel, Edwige Godlewski, Benoît Perthame, Arun In, and P. Rascle, Some new Godunov and relaxation methods for two-phase flow problems, Godunov methods: Theory and Applications (New York) (E. Toro, ed.), Proceedings of the International Conference on Godunov methods in Oxford, 1999, Kluwer Academic/Plenum Publishers, 2001, pp. 179-188.
  • 11. F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics, SIAM J. Numer. Anal. 35 (1998), no. 6, 2223-2249. MR 1655844 (2000a:76129)
  • 12. C.M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren der mathematischen Wissenschaften, vol. 325, Springer-Verlag, Berlin, 2000. MR 1763936 (2001m:35212)
  • 13. B. Després and C. Mazeran, Lagrangian gas dynamics in two-dimensions and Lagrangian systems, Arch. Ration. Mech. Anal. 178 (2005), no. 3, 327-372. MR 2196496 (2006j:76135)
  • 14. J. Donea, A. Huerta, J. P. Ponthot, and A. Rodríguez-Ferran, Arbitrary Lagragian-Eulerian methods, Encyclopedia of Computational Mechanics (E. Stein, R. de Borst, and T. Hughes, eds.), vol. 1, John Wiley & Sons, 2004, pp. 413-437.
  • 15. F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Diff. Eq. 71 (1988), no. 1, 93-122. MR 922200 (89c:35099)
  • 16. Steinar Evje and Tore Flåtten, Weakly implicit numerical schemes for a two-fluid model, SIAM J. Sci. Comput. 26 (2005), no. 5, 1449-1484. MR 2142581 (2005k:76133)
  • 17. I. Faille and E. Heintzé, A rough finite volume scheme for modeling two phase flow in a pipeline, Computers and Fluids 28 (1999), 213-241.
  • 18. Edwige Godlewski and Pierre Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987 (98d:65109)
  • 19. Charles Hirsch, Numerical computation of internal and external flows, vol. I & II, Wiley Series in Numerical Methods in Engineering, John Wiley and Sons, New York, 1990.
  • 20. C. W. Hirt, A. A. Amsden, and J. L. Cook, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, J. Comput. Phys. 14 (1974), 227-253.
  • 21. M. J. Holst, Notes on the KIVA-II software and chemically reactive fluid mechanics, Report UCRL-ID-112019, Lawrence Livermore National Laboratory, California, 1992.
  • 22. S. Jin and Z. P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimension, Comm. Pure Appl. Math. 48 (1995), no. 3, 235-276. MR 1322811 (96c:65134)
  • 23. C. Johnson and A. Szepessy, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp. 49 (1987), no. 180, 427-444. MR 906180 (88h:65164)
  • 24. R. J. LeVeque, Numerical methods for conservation laws, Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Berlin, 1992. MR 1153252 (92m:65106)
  • 25. Tai Ping Liu, Hyperbolic conservation laws with relaxation, Comm. Math. Phys. 108 (1987), no. 1, 153-175. MR 872145 (88f:35092)
  • 26. Jean Marie Masella, Isabelle Faille, and Thierry Gallouët, On an approximate Godunov scheme, Int. J. Comput. Fluid Dynam. 12 (1999), no. 2, 133-149. MR 1729206 (2000h:65122)
  • 27. J. M. Masella, Q. H. Tran, D. Ferré, and C. Pauchon, Transient simulation of two-phase flows in pipes, Int. J. Multiph. Flow 24 (1998), no. 5, 739-755.
  • 28. W. A. Mulder and B. van Leer, Experiments with implicit upwind methods for the Euler equations, J. Comput. Phys. 59 (1985), 232-246. MR 796608
  • 29. Roberto Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math. 49 (1996), 1-30. MR 1391756 (97c:35131)
  • 30. Christian Pauchon, Henri Dhulesia, G. Binh-Cirlot, and Jean Fabre, TACITE: A transient tool for multiphase pipeline and well simulation, SPE Annual Technical Conference and Exhibition, New Orleans, September 1994, 1994, SPE Paper 28545.
  • 31. David L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Review 20 (1978), no. 4, 639-739. MR 508380 (80c:93032)
  • 32. Joel Smoller, Shock waves and reaction-diffusion equations, Grundlehren der mathematischen Wissenschaften, vol. 258, Springer-Verlag, New York, 1994. MR 1301779 (95g:35002)
  • 33. E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: A practical introduction, Springer-Verlag, Berlin, 1997. MR 1474503 (98h:76099)
  • 34. D. H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions, J. Diff. Eq. 68 (1987), 118-136. MR 885816 (88i:35100)
  • 35. H. Weyl, Shock waves in arbitrary fluids, Comm. Pure Appl. Math 2 (1949), 103-122. MR 0034677 (11:626a)
  • 36. H. C. Yee, R. F. Warming, and A. Harten, Implicit Total Variation Diminishing schemes for steady-state calculations, J. Comput. Phys. 57 (1985), no. 3, 327-360. MR 782986 (86h:65134)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M08, 35L04

Retrieve articles in all journals with MSC (2010): 65M08, 35L04


Additional Information

Frédéric Coquel
Affiliation: UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Quang Long Nguyen
Affiliation: CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

Marie Postel
Affiliation: Département Mathématiques Appliquées, Institut Français du Pétrole, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France

Quang Huy Tran
Affiliation: Département Mathématiques Appliquées, Institut Français du Pétrole, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France

DOI: https://doi.org/10.1090/S0025-5718-10-02339-2
Keywords: Euler equations, multiphase flow, initial boundary value problems, explicit-implicit, relaxation methods, Lagrange-projection, entropy-satisfying, positivity-preserving
Received by editor(s): December 31, 2007
Received by editor(s) in revised form: February 27, 2009
Published electronically: February 23, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society