The period of the Bell numbers modulo a prime
Authors:
Peter L. Montgomery, Sangil Nahm and Samuel S. Wagstaff Jr.
Journal:
Math. Comp. 79 (2010), 17931800
MSC (2010):
Primary 11B73, 11A05, 11A07, 11A51
Published electronically:
March 1, 2010
MathSciNet review:
2630013
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We discuss the numbers in the title, and in particular whether the minimum period of the Bell numbers modulo a prime can be a proper divisor of . It is known that the period always divides . The period is shown to equal for most primes below 180. The investigation leads to interesting new results about the possible prime factors of . For example, we show that if is an odd positive integer and is a positive integer and is prime, then divides . Then we explain how this theorem influences the probability that divides .
 1.
Paul
T. Bateman and Roger
A. Horn, A heuristic asymptotic formula
concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 0148632
(26 #6139), 10.1090/S00255718196201486327
 2.
C. E. Bickmore.
Problem 13058. Math. Quest. Educ. Times, 65:78, 1896.
 3.
Mireille
Car, Luis
H. Gallardo, Olivier
Rahavandrainy, and Leonid
N. Vaserstein, About the period of Bell numbers modulo a
prime, Bull. Korean Math. Soc. 45 (2008), no. 1,
143–155. MR 2391463
(2009e:11039), 10.4134/BKMS.2008.45.1.143
 4.
L. E. Dickson.
History of the Theory of Numbers, volume 1: Divisibility and Primality. Chelsea Publishing Company, New York, New York, 1971.
 5.
Jack
Levine and R.
E. Dalton, Minimum periods, modulo 𝑝, of
firstorder Bell exponential integers., Math.
Comp. 16 (1962),
416–423. MR 0148604
(26 #6111), 10.1090/S00255718196201486042
 6.
W.
F. Lunnon, P.
A. B. Pleasants, and N.
M. Stephens, Arithmetic properties of Bell numbers to a composite
modulus. I, Acta Arith. 35 (1979), no. 1,
1–16. MR
536875 (80k:05006)
 7.
J. Sabia and S. Tesauri.
The least prime in certain arithmetic progressions. Amer. Math. Monthly, 116:641643, 2009.
 8.
J. Touchard.
Propriétés arithmétiques de certains nombres recurrents. Ann. Soc. Sci. Bruxelles, 53A:2131, 1933.
 9.
Samuel
S. Wagstaff Jr., Divisors of Mersenne numbers,
Math. Comp. 40 (1983), no. 161, 385–397. MR 679454
(84j:10052), 10.1090/S0025571819830679454X
 10.
Samuel
S. Wagstaff Jr., Aurifeuillian factorizations and the
period of the Bell numbers modulo a prime, Math. Comp. 65 (1996), no. 213, 383–391. MR 1325876
(96f:11033), 10.1090/S0025571896006837
 11.
G.
T. Williams, Numbers generated by the function
𝑒^{𝑒^{𝑥}1}, Amer. Math. Monthly
52 (1945), 323–327. MR 0012612
(7,47e)
 1.
 P. T. Bateman and R. A. Horn.
A heuristic asymptotic formula concerning the distribution of prime numbers. Math. Comp., 16:363367, 1962. MR 0148632 (26:6139)
 2.
 C. E. Bickmore.
Problem 13058. Math. Quest. Educ. Times, 65:78, 1896.
 3.
 M. Car, L. H. Gallardo, O. Rahavandrainy, and L. N. Vaserstein.
About the period of Bell numbers modulo a prime. Bull. Korean Math. Soc., 45(1):143155, 2008. MR 2391463 (2009e:11039)
 4.
 L. E. Dickson.
History of the Theory of Numbers, volume 1: Divisibility and Primality. Chelsea Publishing Company, New York, New York, 1971.
 5.
 J. Levine and R. E. Dalton.
Minimum periods, modulo , of firstorder Bell exponential numbers. Math. Comp., 16:416423, 1962. MR 0148604 (26:6111)
 6.
 W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens.
Arithmetic properties of Bell numbers to a composite modulus I. Acta Arith., 35:116, 1979. MR 536875 (80k:05006)
 7.
 J. Sabia and S. Tesauri.
The least prime in certain arithmetic progressions. Amer. Math. Monthly, 116:641643, 2009.
 8.
 J. Touchard.
Propriétés arithmétiques de certains nombres recurrents. Ann. Soc. Sci. Bruxelles, 53A:2131, 1933.
 9.
 S. S. Wagstaff, Jr.
Divisors of Mersenne numbers. Math. Comp., 40:385397, 1983. MR 679454 (84j:10052)
 10.
 S. S. Wagstaff, Jr.
Aurifeuillian factorizations and the period of the Bell numbers modulo a prime. Math. Comp., 65:383391, 1996. MR 1325876 (96f:11033)
 11.
 G. T. Williams.
Numbers generated by the function . Amer. Math. Monthly, 52:323327, 1945. MR 0012612 (7:47e)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2010):
11B73,
11A05,
11A07,
11A51
Retrieve articles in all journals
with MSC (2010):
11B73,
11A05,
11A07,
11A51
Additional Information
Peter L. Montgomery
Affiliation:
Microsoft Research, One Microsoft Way, Redmond, Washington 98052
Email:
pmontgom@cwi.nl
Sangil Nahm
Affiliation:
Department of Mathematics, Purdue University, 150 North University Street, West Lafayette, Indiana 479072067
Email:
snahm@purdue.edu
Samuel S. Wagstaff Jr.
Affiliation:
Center for Education and Research in Information Assurance and Security, and Departments of Computer Science and Mathematics, Purdue University, 305 North University Street, West Lafayette, Indiana 479072107
Email:
ssw@cerias.purdue.edu
DOI:
http://dx.doi.org/10.1090/S0025571810023409
Keywords:
Bell numbers,
period modulo $p$
Received by editor(s):
July 9, 2008
Received by editor(s) in revised form:
August 7, 2009
Published electronically:
March 1, 2010
Additional Notes:
This work was supported in part by the CERIAS Center at Purdue University.
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
