Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergent finite element discretization of the multi-fluid nonstationary incompressible magnetohydrodynamics equations


Authors: Lubomír Banas and Andreas Prohl
Journal: Math. Comp. 79 (2010), 1957-1999
MSC (2010): Primary 65M60, 65M12, 76W05; Secondary 65M55, 65M50
DOI: https://doi.org/10.1090/S0025-5718-10-02341-0
Published electronically: April 21, 2010
MathSciNet review: 2684352
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a convergent implicit stabilized finite element discretization of the nonstationary incompressible magnetohydrodynamics equations with variable density, viscosity, and electric conductivity. The discretization satisfies a discrete energy law, and a discrete maximum principle for the positive density, and iterates converge to weak solutions of the limiting problem for vanishing discretization parameters. A simple fixed point scheme, together with an appropriate stopping criterion is proposed, which decouples the computation of density, velocity, and magnetic field, and inherits the above properties, provided a mild mesh constraint holds. Computational studies are provided.


References [Enhancements On Off] (What's this?)

  • 1. C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains, Math. Meth. Appl. Sci. 21, pp. 823-864 (1998). MR 1626990 (99e:35037)
  • 2. F. Armero, J.C. Simo, Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations, Comp. Meth. Appl. Mech. Engrg. 131, pp. 41-90 (1996). MR 1393572 (97g:76050)
  • 3. D. N. Arnold, R. S. Falk, R. Winther: Multigrid in H(div) and H(curl). Numer. Math., Vol. 85, pp. 197-217, 2000. MR 1754719 (2001d:65161)
  • 4. S.C. Brenner, L.R. Scott, The mathematical theory of finite element methods, Springer (1994). MR 1278258 (95f:65001)
  • 5. Z. Chen, Q. Du, J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients, SIAM J. Numer. Anal. 37, pp. 1542-1570 (2000). MR 1759906 (2001h:78044)
  • 6. J.F. Ciavaldini, Analyse numerique d'un probleme de Stefan a deux phases par une methode d'elements finis, SIAM J. Numer. Anal. 12, pp. 464-487 (1975). MR 0391741 (52:12561)
  • 7. M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math. 93, pp. 239-277 (2002). MR 1941397 (2004a:78039)
  • 8. M. Crouzeix, V. Thomée, The stability in $ L_p$ and $ W^{1}_p$ of the $ L_2$-Projection onto finite element function spaces, Math. Comp. 48, pp. 521-532 (1987). MR 878688 (88f:41016)
  • 9. R. DiPerna, P.L.-Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98, pp. 511-547 (1989). MR 1022305 (90j:34004)
  • 10. J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations, Num. Math. 87, pp. 83-111 (2000). MR 1800155 (2001j:76071)
  • 11. J.-F. Gerbeau, C. Le Bris, T. Lelievre, Mathematical methods for the magnetohydrodynamics of liquid metals, Oxford Science Publications (2006). MR 2289481 (2008i:76205)
  • 12. V. Girault, R.H. Nochetto, R. Scott, Maximum-norm stability of the finite element Stokes projection, J. Math. Pures Appl. 84, pp. 279-330 (2005). MR 2121575 (2006j:76087)
  • 13. J.-F. Gerbeau, T. Lelièvre, and C. Le Bris. Simulations of MHD flows with moving interfaces, J. Comput. Phys. 184, pp. 163-191 (2003). MR 1961974 (2003k:76158)
  • 14. D.T. Graves, D. Trebotich, G.H. Miller, P. Colella. An efficient solver for the equations of resistive MHD with spatially-varying resistivity, J. Comput. Phys. 227, pp. 4797-4804 (2008). MR 2414835
  • 15. V. Girault, P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer (1986). MR 851383 (88b:65129)
  • 16. M.D. Gunzburger, A.J. Meir, J.S. Peterson, On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics, Math. Comp. 56, pp. 523-563 (1991). MR 1066834 (91m:76127)
  • 17. U. Hasler, A. Schneebeli, D. Schötzau, Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Appl. Num. Math. 51, pp. 19-45 (2004). MR 2083323 (2005d:65209)
  • 18. J.G. Heywood, R. Rannacher, Finite element solution of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal. 19, pp. 275-311 (1982). MR 650052 (83d:65260)
  • 19. W. Hackbusch. Multigrid methods and applications, volume 4 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1985). MR 814495 (87e:65082)
  • 20. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica 11, pp. 237-339 (2002). MR 2009375 (2004k:78028)
  • 21. R. Hiptmair Multigrid method for Maxwell's equations, SIAM J. Numer. Anal. 36, pp. 204-225 (1998). MR 1654571 (99j:65229)
  • 22. V. John. Higher order finite element methods and multigrid solvers in a benchmark problem for the 3d Navier-Stokes equations. Int. J. Numer. Meth. Fluids 40, pp. 775-798 (2002). MR 1928952 (2003h:76092)
  • 23. F. Kikuchi, On a discrete compactness property for the Nédélec finite elements, J. Fac. Sci. Univ. of Tokyo Sec. IA 36, pp. 479-490 (1989). MR 1039483 (91h:65173)
  • 24. S. Korotov, M. Krizek, Acute type refinements of tetrahedral partitions of polyhedral domains, SIAM J. Numer. Anal. 39, pp. 724-733 (2001). MR 1860255 (2002g:65144)
  • 25. Dmitri Kuzmin, On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys., 219:513-531, 2006. MR 2274948 (2007g:76134)
  • 26. Dmitri Kuzmin and Matthias Möller, Algebraic flux correction. I. Scalar conservation laws. In Flux-corrected transport, Sci. Comput., pages 155-206. Springer, Berlin, 2005. MR 2129255
  • 27. J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Gauthier-Villars, Paris (1969). MR 0259693 (41:4326)
  • 28. P.L. Lions, Mathematical topics in fluid mechanics, Volume I: Incompressible Models, Oxford University Press, Oxford (1996). MR 1422251 (98b:76001)
  • 29. J.L. Lions, E. Magenes, Nonhonmogeneous boundary value problems and applications, Volume I, Springer-Verlag, New York (1972).
  • 30. C. Liu, N.J. Walkington, Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity, SIAM J. Numer. Anal. 45, pp. 1287-1304 (2007). MR 2318813 (2008f:65177)
  • 31. P. Monk, Finite element methods for Maxwell's equations, Oxford University Press, New York (2003). MR 2059447 (2005d:65003)
  • 32. D. Munger and A. Vincent. A level set approach to simulate magnetohydrodynamic instabilities in aluminium reduction cells, J. Comput. Phys. 217, pp. 295-311 (2006). MR 2260603 (2007f:76151)
  • 33. A. Prohl, Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system, Math. Mod. Numer. Analysis 42, pp. 1065-1087 (2008). MR 2473320
  • 34. A. Schmidt and K. G. Siebert, ALBERT--software for scientific computations and applications, Acta Math. Univ. Comenian. (N.S.) 70, pp. 105-122 (2000). MR 1865363
  • 35. R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, AMS (1997). MR 1422252 (98c:47076)
  • 36. D. Schötzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Num. Math. 96, pp. 771-800 (2004). MR 2036365 (2005b:76088)
  • 37. J. Simon, Sobolev, Besov and Nikolskii fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval, Ann. Mat. Pura Appl. 157, pp. 117-148 (1990). MR 1108473 (92e:46075)
  • 38. N.J. Walkington, Convergence of the discontinuous Galerkin method for discontinuous solutions, SIAM J. Numer. Anal. 42, pp. 1801-1817 (2004). MR 2139223 (2006b:65147)
  • 39. J. Zhao, Analysis of finite element approximation for time-dependent Maxwell problems, Math. Comp. 73, pp. 1089-1105 (2003). MR 2047079 (2005b:65112)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M60, 65M12, 76W05, 65M55, 65M50

Retrieve articles in all journals with MSC (2010): 65M60, 65M12, 76W05, 65M55, 65M50


Additional Information

Lubomír Banas
Affiliation: Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom
Email: l.banas@hw.ac.uk

Andreas Prohl
Affiliation: Mathematisches Institut der Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Email: prohl@na.uni-tuebingen.de

DOI: https://doi.org/10.1090/S0025-5718-10-02341-0
Received by editor(s): December 4, 2008
Received by editor(s) in revised form: August 7, 2009
Published electronically: April 21, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society