Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A new multiscale finite element method for high-contrast elliptic interface problems


Authors: C.-C. Chu, I. G. Graham and T.-Y. Hou
Journal: Math. Comp. 79 (2010), 1915-1955
MSC (2010): Primary 65N12, 65N30
DOI: https://doi.org/10.1090/S0025-5718-2010-02372-5
Published electronically: May 25, 2010
MathSciNet review: 2684351
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new multiscale finite element method which is able to accurately capture solutions of elliptic interface problems with high contrast coefficients by using only coarse quasiuniform meshes, and without resolving the interfaces. A typical application would be the modelling of flow in a porous medium containing a number of inclusions of low (or high) permeability embedded in a matrix of high (respectively low) permeability. Our method is $ H^1$- conforming, with degrees of freedom at the nodes of a triangular mesh and requiring the solution of subgrid problems for the basis functions on elements which straddle the coefficient interface but which use standard linear approximation otherwise. A key point is the introduction of novel coefficient-dependent boundary conditions for the subgrid problems. Under moderate assumptions, we prove that our methods have (optimal) convergence rate of $ O(h)$ in the energy norm and $ O(h^2)$ in the $ L_2$ norm where $ h$ is the (coarse) mesh diameter and the hidden constants in these estimates are independent of the ``contrast'' (i.e. ratio of largest to smallest value) of the PDE coefficient. For standard elements the best estimate in the energy norm would be $ \mathcal{O}(h^{1/2-\epsilon})$ with a hidden constant which in general depends on the contrast. The new interior boundary conditions depend not only on the contrast of the coefficients, but also on the angles of intersection of the interface with the element edges.


References [Enhancements On Off] (What's this?)

  • 1. L. Adams, Z.L. Li, The immersed interface/multigrid methods for interface problems, SIAM J. Sci. Comput. 24 (2002), 463-479. MR 1951051 (2004f:65109)
  • 2. M. Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal. 42 (2005), 2320-2341. MR 2139395 (2006j:65331)
  • 3. I. Babuška, The finite element method for elliptic equations with discontinuous coefficients, Computing 5 (1970), 207-213. MR 0277119 (43:2856)
  • 4. I. Babu$ \breve{s}$ka, G. Caloz, and J.E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), 945-981. MR 1286212 (95g:65146)
  • 5. I. Babu$ \breve{s}$ka and J.E. Osborn. Generalized finite element methods: Their performance and their relation to mixed methods, SIAM J. Numer. Anal. 20 (1983), 510-536. MR 701094 (84h:65076)
  • 6. J.W. Barrett and C.M. Elliott, Fitted and unfitted finite element methods for elliptic-equations with smooth interfaces, IMA J. Numer. Anal. 7 (1987), 283-300. MR 968524 (90a:65231)
  • 7. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), 579-608. MR 1771781 (2001e:65177)
  • 8. I.-L. Chern and Y.-C. Shu, A coupling interface method for elliptic interface problems, J. Comput. Phys. 225 (2007), 2138-2174. MR 2349699 (2008k:65221)
  • 9. Z. Chen and J. Zou,
    Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math. 79 (1998), 175-202. MR 1622502 (99d:65313)
  • 10. M. Dryja, On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients, Computational Methods in Applied Mathematics 3 (2003), 76-85. MR 2002258 (2004i:65120)
  • 11. M.A. Dumett and J.P. Keener, An immersed interface method for solving anisotropic elliptic boundary value problems in three dimensions, SIAM J. Sci. Comput. 25 (2003), 348-367. MR 2047209 (2005g:65157)
  • 12. Y. Efendiev and T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications, Springer Publ., February, 2009. MR 2477579
  • 13. R.P. Fedkiw, T. Aslam, B, Merriman and S. Osher, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys. 152 (1999), 457-492. MR 1699710 (2000c:76061)
  • 14. D.Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. MR 0473443 (57:13109)
  • 15. I.G. Graham, P. Lechner and R. Scheichl, Domain decomposition for multiscale PDEs, Numer. Math. 106 (2007), 589-626. MR 2317926 (2008f:65242)
  • 16. I.G. Graham and R. Scheichl, Robust domain decomposition algorithms for multiscale PDEs, Numerical Methods for Partial Differential Equations 23 (2007), 859-878. MR 2326197 (2008c:65367)
  • 17. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985. MR 775683 (86m:35044)
  • 18. T.Y. Hou, Z.L. Li, S. Osher and H. Zhao, A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comp. Phys. 134 (1997), 236-252. MR 1458828 (98d:76128)
  • 19. T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comp. Phys. 134 (1997), 169-189. MR 1455261 (98e:73132)
  • 20. T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients, Math. Comp. 68 (1999), 913-943. MR 1642758 (99i:65126)
  • 21. J. Huang and J. Zou, Some new a priori estimates for second-order elliptic and parabolic interface problems, Journal of Differential Equations 184 (2002), 570-586. MR 1929889 (2003h:35026)
  • 22. B.C. Khoo, T.G. Liu and C.W. Wang, The ghost fluid method for compressible gas-water simulation, J. Comput. Phys. 204 (2005), 193-221. MR 2121909 (2005j:76079)
  • 23. B.C. Khoo, T.G. Liu and K.S. Yeo, Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys. 190 (2003), 651-681.
  • 24. R.J. LeVeque and Z.L. Li, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal. 31 (1994), 1019-1044. MR 1286215 (95g:65139)
  • 25. J. Li, J.M. Melenk, B. Wohlmuth and J. Zou, Optimal a priori estimates for higher order finite element methods for elliptic interface problems, Applied Numerical Mathematics (in press) (2009).
  • 26. Z.L. Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal. 35 (1998), 230-254. MR 1618460 (99b:65126)
  • 27. Z.L. Li and K. Ito, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput. 23 (2001), 339-361. MR 1860918 (2002h:65166)
  • 28. Z.L. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math. 96 (2003), 61-98. MR 2018791 (2005c:65104)
  • 29. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin, 1972.
  • 30. X.D. Liu, R.P. Fedkiw and M.J. Kang, A boundary condition capturing method for Poisson's equation on irregular domains, J. Comput. Phys. 160 (2000), 151-178. MR 1756763 (2001a:65152)
  • 31. X.D. Liu and T. C. Sideris, Convergence of the ghost fluid method for elliptic equations with interfaces, Math. Comput. 72 (2003), 1731-1746. MR 1986802 (2004h:65107)
  • 32. H. Kang and J.K. Seo, The layer potential technique for the inverse conductivity problem, Inverse Problems 12 (1996) 267-278. MR 1391539 (97d:35242)
  • 33. H. Kang, J.K. Seo and D. Sheen, Numerical identification of discontinuous conductivity coefficients, Inverse Problems 13 (1997) 113-123. MR 1435871 (98k:78052)
  • 34. W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, UK (2000). MR 1742312 (2001a:35051)
  • 35. H. Owhadi and L. Zhang, Metric based up-scaling, Comm. Pure Appl. Math 60 (2007) 675-723. MR 2292954 (2008c:35041)
  • 36. C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs, Numer. Math. 111 (2008), 293-333. MR 2456834
  • 37. C.S. Peskin, Numerical study of blood flow in the heart, J. Comput. Phys. 25 (1977), 220-252. MR 0490027 (58:9389)
  • 38. C.S. Peskin, The immersed boundary method, Acta Numerica 11 (2002), 479-517. MR 2009378 (2004h:74029)
  • 39. M. Plum and C. Wieners, Optimal a priori estimates for interface problems, Numer. Math. 95 (2003), 735-759. MR 2013126 (2004i:65126)
  • 40. M.E. Taylor, Partial Differential Equations, Volume I, Springer-Verlag, Berlin, 1996. MR 1395147 (98b:35002a)
  • 41. A. Toselli and O. Widlund, Domain Decomposition Methods Algorithms and Theory, Springer-Verlag, Berlin-Heidelberg-New York, 2005. MR 2104179 (2005g:65006)
  • 42. S.O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys. 100 (1992), 25-37.
  • 43. T. von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder Singularitätaten und Approximation mit Randelementmethoden, Ph.D. Thesis, T.U. Darmstadt, German, 1989.
  • 44. M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, preprint, University of Paris VI, 2008. MR 2451464
  • 45. Y.C. Zhou, S. Zhao, M. Feig and G.W. Wei, High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources, J. Comp. Phys. 213 (2006), 1-30. MR 2186592 (2007e:65137)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N12, 65N30

Retrieve articles in all journals with MSC (2010): 65N12, 65N30


Additional Information

C.-C. Chu
Affiliation: Department of Applied and Computational Mathematics, California Institute of Technology, Pasadena, California 91125
Address at time of publication: Department of Mathematics, University of Texas at Austin, 1 University Station C1200, Austin, Texas 78712
Email: ccchu@acm.caltech.edu

I. G. Graham
Affiliation: Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom
Email: I.G.Graham@bath.ac.uk

T.-Y. Hou
Affiliation: Department of Applied and Computational Mathematics, California Insitute of Technology, Pasadena, California 91125
Email: hou@acm.caltech.edu

DOI: https://doi.org/10.1090/S0025-5718-2010-02372-5
Keywords: Second-order elliptic problems, interfaces, high contrast, multiscale finite elements, non-periodic media, convergence.
Received by editor(s): February 24, 2009
Published electronically: May 25, 2010
Additional Notes: The authors thank Rob Scheichl and Jens Markus Melenk for useful discussions. The second author acknowledges financial support from the Applied and Computational Mathematics Group at California Institute of Technology. The research of the third author was supported in part by an NSF Grant DMS-0713670 and a DOE Grant DE-FG02-06ER25727.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society