Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods


Author: Martin Vohralík
Journal: Math. Comp. 79 (2010), 2001-2032
MSC (2010): Primary 65N15, 65N30, 76S05
DOI: https://doi.org/10.1090/S0025-5718-2010-02375-0
Published electronically: May 26, 2010
MathSciNet review: 2684353
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We derive in this paper a unified framework for a priori and a posteriori error analysis of mixed finite element discretizations of second-order elliptic problems. It is based on the classical primal weak formulation, the postprocessing of the potential proposed in [T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), 943-972], and the discrete Friedrichs inequality. Our analysis in particular avoids any explicit use of the uniform discrete $ \inf$-$ \sup$ condition and in a straightforward manner and under minimal necessary assumptions, known convergence and superconvergence results are recovered. The same framework then turns out to lead to optimal a posteriori energy error bounds. In particular, estimators for all families and orders of mixed finite element methods on grids consisting of simplices or rectangular parallelepipeds are derived. They give a guaranteed and fully computable upper bound on the energy error, represent error local lower bounds, and are robust under some conditions on the diffusion-dispersion tensor. They are thus suitable for both overall error control and adaptive mesh refinement. Moreover, the developed abstract framework and a posteriori error estimates are quite general and apply to any locally conservative method. We finally prove that in parallel and simultaneously in converse to Galerkin finite element methods, under some circumstances, the weak solution is the orthogonal projection of the postprocessed mixed finite element approximation onto the $ H^1_0(\Omega)$ space and also establish several links between mixed finite element approximations and some generalized weak solutions.


References [Enhancements On Off] (What's this?)

  • 1. Ivar Aavatsmark, Tor Barkve, Øistein Bøe, and Trond Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. I. Derivation of the methods, SIAM J. Sci. Comput. 19 (1998), no. 5, 1700-1716. MR 1618761 (99f:65138)
  • 2. Boujemâa Achchab, Abdellatif Agouzal, Jacques Baranger, and Jean-François Maître, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes, Numer. Math. 80 (1998), no. 2, 159-179. MR 1645037 (2000d:65092)
  • 3. Yves Achdou, Christine Bernardi, and Frédéric Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations, Numer. Math. 96 (2003), no. 1, 17-42. MR 2018789 (2005d:65179)
  • 4. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975, Pure and Applied Mathematics, Vol. 65. MR 0450957 (56:9247)
  • 5. Mark Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal. 42 (2005), no. 6, 2320-2341. MR 2139395
  • 6. Mark Ainsworth, A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements, SIAM J. Sci. Comput. 30 (2007), no. 1, 189-204. MR 2377438 (2008m:65308)
  • 7. Ana Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385-395. MR 1414415 (97g:65212)
  • 8. Todd Arbogast and Zhangxin Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), no. 211, 943-972. MR 1303084 (95k:65102)
  • 9. Douglas N. Arnold and Franco Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7-32. MR 813687 (87g:65126)
  • 10. Ivo Babuška, John E. Osborn, and Juhanni Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comp. 35 (1980), no. 152, 1039-1062. MR 583486 (81m:65166)
  • 11. Ivo Babuška and John E. Osborn, Generalized finite element methods: their performance and their relation to mixed methods, SIAM J. Numer. Anal. 20 (1983), no. 3, 510-536. MR 701094 (84h:65076)
  • 12. Ivo Babuška, Error-bounds for finite element method, Numer. Math. 16 (1971), 322-333. MR 0288971 (44:6166)
  • 13. Mario Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen 22 (2003), no. 4, 751-756. MR 2036927 (2004k:26025)
  • 14. Christine Bernardi and Rüdiger Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579-608. MR 1771781 (2001e:65177)
  • 15. Dietrich Braess and Rüdiger Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431-2444. MR 1427472 (97m:65201)
  • 16. James H. Bramble and Jinchao Xu, A local post-processing technique for improving the accuracy in mixed finite-element approximations, SIAM J. Numer. Anal. 26 (1989), no. 6, 1267-1275. MR 1025087 (90m:65193)
  • 17. Franco Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 129-151. MR 0365287 (51:1540)
  • 18. Franco Brezzi, Jim Douglas, Jr., Ricardo Durán, and Michel Fortin, Mixed finite elements for second order elliptic problems in three variables, Numer. Math. 51 (1987), no. 2, 237-250. MR 890035 (88f:65190)
  • 19. Franco Brezzi, Jim Douglas, Jr., and L. Donatella Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217-235. MR 799685 (87g:65133)
  • 20. Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • 21. Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005), no. 5, 1872-1896. MR 2192322 (2006j:65311)
  • 22. Erik Burman and Alexandre Ern, Continuous interior penalty $ hp$-finite element methods for advection and advection-diffusion equations, Math. Comp. 76 (2007), no. 259, 1119-1140. MR 2299768
  • 23. Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465-476. MR 1408371 (98a:65162)
  • 24. Carsten Carstensen and Sören Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM, Math. Comp. 71 (2002), no. 239, 945-969. MR 1898741 (2003e:65212)
  • 25. Zhangxin Chen, Analysis of mixed methods using conforming and nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 1, 9-34. MR 1204626 (94c:65132)
  • 26. -, Equivalence between and multigrid algorithms for nonconforming and mixed methods for second-order elliptic problems, East-West J. Numer. Math. 4 (1996), no. 1, 1-33. MR 1393063 (98c:65184)
  • 27. So-Hsiang Chou, Do Y. Kwak, and Kwang Y. Kim, A general framework for constructing and analyzing mixed finite volume methods on quadrilateral grids: the overlapping covolume case, SIAM J. Numer. Anal. 39 (2001), no. 4, 1170-1196. MR 1870838 (2002j:65109)
  • 28. Bernardo Cockburn and Jayadeep Gopalakrishnan, A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 1, 283-301. MR 2051067 (2005e:65183)
  • 29. -, Error analysis of variable degree mixed methods for elliptic problems via hybridization, Math. Comp. 74 (2005), no. 252, 1653-1677. MR 2164091 (2006e:65215)
  • 30. Jim Douglas, Jr. and Jean E. Roberts, Mixed finite element methods for second order elliptic problems, Mat. Apl. Comput. 1 (1982), no. 1, 91-103. MR 667620 (84b:65111)
  • 31. -, Global estimates for mixed methods for second order elliptic equations, Math. Comp. 44 (1985), no. 169, 39-52. MR 771029 (86b:65122)
  • 32. Jérôme Droniou and Robert Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math. 105 (2006), no. 1, 35-71. MR 2257385
  • 33. Ricardo Durán and Claudio Padra, An error estimator for nonconforming approximations of a nonlinear problem, Finite element methods (Jyväskylä, 1993), Lecture Notes in Pure and Appl. Math., vol. 164, Dekker, New York, 1994, pp. 201-205. MR 1299990
  • 34. Linda El Alaoui and Alexandre Ern, Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods, M2AN Math. Model. Numer. Anal. 38 (2004), no. 6, 903-929. MR 2108938
  • 35. Alexandre Ern, Annette F. Stephansen, and Martin Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems, J. Comput. Appl. Math. 234 (2010), no. 1, 114-130.
  • 36. Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of Numerical Analysis, Vol. VII, North-Holland, Amsterdam, 2000, pp. 713-1020. MR 1804748 (2002e:65138)
  • 37. Robert Eymard, Danielle Hilhorst, and Martin Vohralík, A combined finite volume-nonconforming/mixed-hybrid finite element scheme for degenerate parabolic problems, Numer. Math. 105 (2006), no. 1, 73-131. MR 2257386 (2007i:76066)
  • 38. Richard S. Falk and John E. Osborn, Remarks on mixed finite element methods for problems with rough coefficients, Math. Comp. 62 (1994), no. 205, 1-19. MR 1203735 (94c:65136)
  • 39. Ronald H. W. Hoppe and Barbara I. Wohlmuth, Adaptive multilevel techniques for mixed finite element discretizations of elliptic boundary value problems, SIAM J. Numer. Anal. 34 (1997), no. 4, 1658-1681. MR 1461801 (98e:65095)
  • 40. Ohannes A. Karakashian and Frédéric Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374-2399. MR 2034620 (2005d:65192)
  • 41. Kwang Y. Kim, A posteriori error analysis for locally conservative mixed methods, Math. Comp. 76 (2007), no. 257, 43-66. MR 2261011
  • 42. Robert Kirby, Residual a posteriori error estimates for the mixed finite element method, Comput. Geosci. 7 (2003), no. 3, 197-214. MR 2007578 (2004h:65112)
  • 43. Mats G. Larson and Axel Målqvist, A posteriori error estimates for mixed finite element approximations of elliptic problems, Numer. Math. 108 (2008), no. 3, 487-500. MR 2365826
  • 44. Carlo Lovadina and Rolf Stenberg, Energy norm a posteriori error estimates for mixed finite element methods, Math. Comp. 75 (2006), no. 256, 1659-1674. MR 2240629
  • 45. L. Donatella Marini and Paola Pietra, An abstract theory for mixed approximations of second order elliptic problems, Mat. Apl. Comput. 8 (1989), no. 3, 219-239. MR 1067287 (91h:65177)
  • 46. L. Donatella Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal. 22 (1985), no. 3, 493-496. MR 787572 (86g:65214)
  • 47. Jean-Claude Nédélec, Mixed finite elements in $ {\mathbb{R}}\sp{3}$, Numer. Math. 35 (1980), no. 3, 315-341. MR 592160 (81k:65125)
  • 48. Serge Nicaise and Emmanuel Creusé, Isotropic and anisotropic a posteriori error estimation of the mixed finite element method for second order operators in divergence form, Electron. Trans. Numer. Anal. 23 (2006), 38-62. MR 2268551
  • 49. Lawrence E. Payne and Hans F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286-292. MR 0117419 (22:8198)
  • 50. Gergina V. Pencheva, Martin Vohralík, Mary F. Wheeler, and Tim Wildey, Robust a posteriori error control and adaptivity for multiscale, multinumerics, and mortar coupling, Preprint R10015, Laboratoire Jacques-Louis Lions, HAL Preprint 00467738, Submitted for publication, 2010.
  • 51. William Prager and John L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241-269. MR 0025902 (10,81b)
  • 52. Alfio Quarteroni and Alberto Valli, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994. MR 1299729 (95i:65005)
  • 53. Pierre-Arnaud Raviart and Jean-Marie Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), Springer, Berlin, 1977, pp. 292-315. Lecture Notes in Math., Vol. 606. MR 0483555 (58:3547)
  • 54. Sergey I. Repin and Anton Smolianski, Functional-type a posteriori error estimates for mixed finite element methods, Russian J. Numer. Anal. Math. Modelling 20 (2005), no. 4, 365-382. MR 2161108 (2006c:65108)
  • 55. Sergey I. Repin, Stefan Sauter, and Anton Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems, SIAM J. Numer. Anal. 45 (2007), no. 3, 928-945. MR 2318795 (2009c:65275)
  • 56. Jean E. Roberts and Jean-Marie Thomas, Mixed and hybrid methods, Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam, 1991, pp. 523-639. MR 1115239
  • 57. Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151-167. MR 1086845 (92a:65303)
  • 58. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Teubner-Wiley, Stuttgart, 1996.
  • 59. Martin Vohralík, On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space $ H\sp 1$, Numer. Funct. Anal. Optim. 26 (2005), no. 7-8, 925-952. MR 2192029
  • 60. -, Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, M2AN Math. Model. Numer. Anal. 40 (2006), no. 2, 367-391. MR 2241828 (2007e:76192)
  • 61. -, A posteriori error estimates for finite volume and mixed finite element discretizations of convection-diffusion-reaction equations, ESAIM Proc. 18 (2007), 57-69. MR 2404896 (2009d:65183)
  • 62. -, A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations, SIAM J. Numer. Anal. 45 (2007), no. 4, 1570-1599. MR 2338400
  • 63. -, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, HAL Preprint 00235810, version 2, submitted for publication, 2009
  • 64. -, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111 (2008), no. 1, 121-158. MR 2448206
  • 65. Martin Vohralík, Jiří Maryška, and Otto Severýn, Mixed and nonconforming finite element methods on a system of polygons, Appl. Numer. Math. 57 (2007), 176-193.
  • 66. Mary F. Wheeler and Ivan Yotov, A posteriori error estimates for the mortar mixed finite element method, SIAM J. Numer. Anal. 43 (2005), no. 3, 1021-1042. MR 2177794 (2006h:65174)
  • 67. Barbara I. Wohlmuth and Ronald H. W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp. 68 (1999), no. 228, 1347-1378. MR 1651760 (99m:65222)
  • 68. Anis Younès, Philippe Ackerer, and Guy Chavent, From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions, Internat. J. Numer. Methods Engrg. 59 (2004), no. 3, 365-388. MR 2029282
  • 69. Olgierd C. Zienkiewicz and Jian Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg. 24 (1987), no. 2, 337-357. MR 875306 (87m:73055)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N15, 65N30, 76S05

Retrieve articles in all journals with MSC (2010): 65N15, 65N30, 76S05


Additional Information

Martin Vohralík
Affiliation: UPMC Université Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 75005, Paris, France –and– CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, 75005, Paris, France
Email: vohralik@ann.jussieu.fr

DOI: https://doi.org/10.1090/S0025-5718-2010-02375-0
Keywords: Mixed finite element methods, a priori error estimates, $\inf $--$\sup $ condition, postprocessing, discrete Friedrichs inequality, locally conservative methods, a posteriori error estimates, guaranteed upper bound, orthogonal projection, generalized weak solution
Received by editor(s): July 7, 2008
Received by editor(s) in revised form: August 6, 2009
Published electronically: May 26, 2010
Additional Notes: This work was supported by the GNR MoMaS project “Numerical Simulations and Mathematical Modeling of Underground Nuclear Waste Disposal”, PACEN/CNRS, ANDRA, BRGM, CEA, EdF, IRSN, France.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society