Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the Poincaré-Friedrichs inequality for piecewise $ H^1$ functions in anisotropic discontinuous Galerkin finite element methods


Authors: Huo-Yuan Duan and Roger C. E. Tan
Journal: Math. Comp. 80 (2011), 119-140
MSC (2000): Primary 26D10, 46E35, 65M60, 65N30
DOI: https://doi.org/10.1090/S0025-5718-2010-02296-3
Published electronically: July 8, 2010
MathSciNet review: 2728974
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to propose a proof for the Poincaré-Friedrichs inequality for piecewise $ H^1$ functions on anisotropic meshes. By verifying suitable assumptions involved in the newly proposed proof, we show that the Poincaré-Friedrichs inequality for piecewise $ H^1$ functions holds independently of the aspect ratio which characterizes the shape-regular condition in finite element analysis. In addition, under the maximum angle condition, we establish the Poincaré-Friedrichs inequality for the Crouzeix-Raviart nonconforming linear finite element. Counterexamples show that the maximum angle condition is only sufficient.


References [Enhancements On Off] (What's this?)

  • 1. G. Acosta, Lagrange and average interpolation over 3D anisotropic elements. J. Comput. Appl. Math., 135 (2001), 91-109. MR 1854446 (2002f:65152)
  • 2. G. Acosta and G. Monzón, Interpolation error estimates in $ W\sp {1,p}$ for degenerate $ Q\sb 1$ isoparametric elements. Numer. Math., 104 (2006), 129-150. MR 2242611 (2007m:65098)
  • 3. G. Acosta and R. G. Durán, The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations. SIAM J. Numer. Anal., 37 (2000), 18-36. MR 1721268 (2000g:65107)
  • 4. G. Acosta and R. G. Durán, Error estimates for $ Q_1$ isoparametric elements satisfying a weak angle condition. SIAM J. Numer. Anal., 38 (2000), 1073-1088. MR 1786131 (2001h:65129)
  • 5. T. Apel, Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Stuttgart, Germany, 1999. MR 1716824 (2000k:65002)
  • 6. D. N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19 (1982), 742-760. MR 664882 (83f:65173)
  • 7. D. N. Arnold and R. S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal., 26 (1989), 1276-1290 MR 1025088 (91c:65068)
  • 8. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39 (2002), 1749-1779. MR 1885715 (2002k:65183)
  • 9. I. Babuška, A. K. Aziz, On the angle condition in the finite element method. SIAM J. Numer. Anal., 13 (1976), 214-226. MR 0455462 (56:13700)
  • 10. C. Bandle, Isoperimetric Inequalities and Applications, Pitman, London, 1980. MR 572958 (81e:35095)
  • 11. M. Bebendorf, A note on the Poincaré inequality for convex domains. Journal for Analysis and its Applications, 22 (2003), 751-756. MR 2036927 (2004k:26025)
  • 12. M. Bebendorf and W. Hackbush, Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with $ L^\infty$-coefficients. Numer. Math., 95 (2003), 1-28. MR 1993936 (2004e:65128)
  • 13. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math., 84 (1999), 173-197. MR 1730018 (2000k:65204)
  • 14. J. Brandts, S. Korotov and M. Křížk, On the equivalence of regularity criteria for triangular and tetrahedral partitions. Comput. Math. Appl. 55 (2008), 2227-2233. MR 2413688 (2009a:65298)
  • 15. S. Brenner, Poincaré-Friedrichs inequalities for piecewise $ H^1$ functions. SIAM J. Numer. Anal., 41 (2003), 306-324. MR 1974504 (2004d:65140)
  • 16. S. Brenner, Korn's inequalities for piecewise $ H^1$ vector fields. Math. Comput., 73 (2003), 1067-1087. MR 2047078 (2005c:65096)
  • 17. F. Brezzi, B. Cockburn, L. D. Marini and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Engrg., 195 (2006), 3293-3310 MR 2220920 (2006m:65256)
  • 18. P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, 1978. MR 0520174 (58:25001)
  • 19. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal., 35 (1998), 2440-2463. MR 1655854 (99j:65163)
  • 20. B. Cockburn, G. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, volume 11, Springer, 2000. MR 1842160 (2002b:65004)
  • 21. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations, RAIRO Anal. Numér., 7 (1973), 33-75. MR 0343661 (49:8401)
  • 22. R. G. Durán and A. L. Lombardi, Error estimates on anisotropic Q1 elements for functions in weighted Sobolev spaces. Math. Comp., 74 (2005), 1679-1706. MR 2164092 (2006e:65216)
  • 23. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, Berlin, 1986. MR 851383 (88b:65129)
  • 24. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985. MR 775683 (86m:35044)
  • 25. O. A. Ladyzhenskaya and N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, London, 1968. MR 0244627 (39:5941)
  • 26. Y.-J. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45 (2007), 2442-2467. MR 2361897 (2009a:15256)
  • 27. M. Křížek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal., 29 (1992), 513-520. MR 1154279 (92k:65165)
  • 28. L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev., 9 (1967), 453-488. MR 0218975 (36:2058)
  • 29. J. E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in: Handbook of Numerical Analysis, Vol. II, Finite Element Methods (Part 1), P. G. Ciarlet and J. L. Lions, eds., North-Holland, 1991. MR 1115235 (92f:65001)
  • 30. R. Verfürth, A note on polynomial approximation in Sobolev spaces, M2AN Math. Model. Numer. Anal., 33 (1999), 715-719. MR 1726481 (2000h:41016)
  • 31. B. I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition, Springer-Verlag, Heidelberg, 2001. MR 1820470 (2002c:65231)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2000): 26D10, 46E35, 65M60, 65N30

Retrieve articles in all journals with MSC (2000): 26D10, 46E35, 65M60, 65N30


Additional Information

Huo-Yuan Duan
Affiliation: School of Mathematical Sciences, Nankai University, 94 Weijin Street, Nankai District, Tianjin 300071, People’s Republic of China
Email: hyduan@nankai.edu.cn

Roger C. E. Tan
Affiliation: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
Email: scitance@nus.edu.sg

DOI: https://doi.org/10.1090/S0025-5718-2010-02296-3
Keywords: Poincaré-Friedrichs inequality of piecewise $H^{1}$ function, discontinuous Galerkin finite element method, shape-regular condition, anisotropic mesh, Crouzeix-Raviart nonconforming linear element, the maximum angle condition
Received by editor(s): June 8, 2007
Received by editor(s) in revised form: August 12, 2008
Published electronically: July 8, 2010
Additional Notes: The authors were supported by the NUS academic research grant R-146-000-064-112.
Article copyright: © Copyright 2010 American Mathematical Society

American Mathematical Society