Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

   
 
 

 

An optimal adaptive mixed finite element method


Authors: Carsten Carstensen and Hella Rabus
Journal: Math. Comp. 80 (2011), 649-667
MSC (2010): Primary 65N12, 65N15, 65N30, 65N50, 65Y20
DOI: https://doi.org/10.1090/S0025-5718-2010-02397-X
Published electronically: August 16, 2010
MathSciNet review: 2772091
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Various applications in fluid dynamics and computational continuum mechanics motivate the development of reliable and efficient adaptive algorithms for mixed finite element methods. In order to save degrees of freedom, not all but just a selection of finite element domains are refined. Hence the fundamental question of convergence as well as the question of optimality require new mathematical arguments. The presented adaptive algorithm for Raviart-Thomas mixed finite element methods solves the Poisson model problem, with optimal convergence rate.


References [Enhancements On Off] (What's this?)

  • 1. M. Ainsworth and J. T. Oden.
    A Posteriori Error Estimation in Finite Element Analysis.
    Wiley, New York, 2000. MR 1885308 (2003b:65001)
  • 2. A. Alonso.
    Error estimators for a mixed method.
    Numer. Math., 74:385-395, 1996. MR 1414415 (97g:65212)
  • 3. D. N. Arnold and R. S. Falk.
    A uniformly accurate finite element method for the Reissner-Mindlin plate.
    SIAM J. Numer. Anal., 26:1276-1290, 1989. MR 1025088 (91c:65068)
  • 4. I. Babuška and T. Strouboulis.
    The Finite Element Method and its Reliability.
    Oxford University Press, 2001. MR 1857191 (2002k:65001)
  • 5. C. Bahriawati and C. Carstensen.
    Three MATLAB implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control.
    Comput. Methods Appl. Math., 5(4):333-361, 2005. MR 2194203 (2006j:65335)
  • 6. R. Becker and S. Mao.
    An optimally convergent adaptive mixed finite element method.
    Numer. Math., 111:35-54, 2008. MR 2448202 (2009j:65306)
  • 7. P. Binev, W. Dahmen, and R. DeVore.
    Adaptive finite element methods with convergence rates.
    Numer. Math., 97:219-268, 2004. MR 2050077 (2005d:65222)
  • 8. P. Binev and R. DeVore.
    Fast computation in adaptive tree approximation.
    Numer. Math., 97:193-217, 2004. MR 2050076 (2005e:65223)
  • 9. D. Braess.
    Finite Elements.
    Cambridge University Press, Cambridge University Press, 2001. MR 1827293 (2001k:65002)
  • 10. S. C. Brenner and C. Carstensen.
    Finite Element Methods, Chapter 4, In E. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of Computational Mechanics,
    John Wiley and Sons, 2004.
  • 11. S. C. Brenner and L. R. Scott.
    The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics.
    Springer-Verlag, New York, Berlin, Heidelberg, third edition, 2008. MR 2373954 (2008m:65001)
  • 12. F. Brezzi and M. Fortin.
    Mixed and Hybrid Finite Element Methods.
    Springer-Verlag, New-York, 1991. MR 1115205 (92d:65187)
  • 13. C. Carstensen.
    Three remarks on the convergence of adaptive finite element methods.
    In preparation.
  • 14. C. Carstensen.
    A posteriori error estimate for the mixed finite element method.
    Math. Comp., 66:465-476, 1997. MR 1408371 (98a:65162)
  • 15. C. Carstensen.
    A unifying theory of a posteriori finite element error control.
    Numer. Math., 100:617-637, 2005. MR 2194587 (2007d:65108)
  • 16. C. Carstensen.
    Convergence of adaptive finite element methods in computational mechanics.
    Appl. Numer. Math., 59:2119-2130, 2009. MR 2532857 (2010d:65313)
  • 17. C. Carstensen and S. Bartels.
    Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM.
    Math. Comput., 71(239):945-969, 2002. MR 1898741 (2003e:65212)
  • 18. C. Carstensen and R. H. W. Hoppe.
    Convergence analysis of an adaptive nonconforming finite element method.
    Numer. Math., 103(2):251-266, 2006. MR 2222810 (2007a:65189)
  • 19. C. Carstensen and R. H. W. Hoppe.
    Error reduction and convergence for an adaptive mixed finite element method.
    Math. Comput., 75(255):1033-1042, 2006. MR 2219017 (2007b:65116)
  • 20. C. Carstensen, A. Orlando, and J. Valdman.
    A convergent adaptive finite element method for the primal problem of elastoplasticity.
    International Journal for Numerical Methods in Engineering, 67:1851-1887, 2006. MR 2260632 (2007k:74119)
  • 21. J. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert.
    Quasi-optimal convergence rate for an adaptive finite element method.
    SIAM J. Numer. Anal., 46(5):2524-2550, 2008. MR 2421046 (2009h:65174)
  • 22. L. Chen, M. Holst, and J. Xu.
    Convergence and optimality of adaptive mixed finite element methods.
    Math. Comp., 78(265):35-53, 2009. MR 2448696 (2009j:65312)
  • 23. W. Dörfler.
    A convergent adaptive algorithm for Poisson's equation.
    SIAM J. Numer. Anal., 33(3):1106-1124, 1996. MR 1393904 (97e:65139)
  • 24. K. Eriksson, D. Estep, P. Hansbo, and C. Johnson.
    Computational Differential Equations.
    Cambridge University Press, Cambridge, 1996. MR 1414897 (97m:65006)
  • 25. V. Girault and P.-A. Raviart.
    Finite Element Methods for Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics.
    Springer-Verlag, Berlin, Heidelberg, New York, 1986. MR 851383 (88b:65129)
  • 26. L. D. Marini.
    An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method.
    SIAM J. Numer. Anal., 22:493-496, 1985. MR 787572 (86g:65214)
  • 27. P. Morin, R. H. Nochetto, and K. G. Siebert.
    Convergence of adaptive finite element methods.
    SIAM Review, 44:631-658, 2003. MR 1980447
  • 28. P. Morin, K. G. Siebert, and A. Veeser.
    A basic convergence result for conforming adaptive finite elements.
    Math. Models Methods Appl. Sci., 18(5):707-737, 2008. MR 2413035 (2009d:65178)
  • 29. P. Neittaanmäki and S. Repin.
    Reliable methods of computer simulation: Error control and a posteriori estimates.
    Elsevier, Amsterdam, 2004. MR 2095603 (2005k:65005)
  • 30. R. Rannacher and R. Becker.
    An optimal control approach to error estimation and mesh adaptation in finite element methods.
    Acta Numerica, 10:1-102, 2001. MR 2009692 (2004g:65147)
  • 31. R. Stevenson.
    Optimality of a standard adaptive finite element method.
    Foundations of Computational Mathematics, 7(2):245-269, 2007. MR 2324418 (2008i:65272)
  • 32. R. Stevenson.
    The completion of locally refined simplicial partitions created by bisection.
    Mathematics of Computation, 77(261):227-241, 2008. MR 2353951 (2008j:65219)
  • 33. R. Verfürth.
    A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques.
    Advances in Numerical Mathematics. Wiley-Teubner, 1996.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N12, 65N15, 65N30, 65N50, 65Y20

Retrieve articles in all journals with MSC (2010): 65N12, 65N15, 65N30, 65N50, 65Y20


Additional Information

Carsten Carstensen
Affiliation: Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany and Department of Computational Science and Engineering, Yonsei University, 120-749 Seoul, Korea
Email: cc@mathematik.hu-berlin.de

Hella Rabus
Affiliation: Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
Email: rabus@mathematik.hu-berlin.de

DOI: https://doi.org/10.1090/S0025-5718-2010-02397-X
Keywords: AFEM, adaptive mixed finite element method, AMFEM, optimal convergence
Received by editor(s): September 16, 2008
Received by editor(s) in revised form: July 26, 2009, and November 16, 2009
Published electronically: August 16, 2010
Additional Notes: The first author was partly supported by the Hausdorff Institute of Mathematics in Bonn, Germany and by the WCU program through KOSEF (R31-2008-000-10049-0)
The second author was partly supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin, Germany and the DFG research group 797 ‘Analysis and Computation of Microstructure in Finite Plasticity’
Article copyright: © Copyright 2010 Carsten Carstensen and Hella Rabus

American Mathematical Society