Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing systems of Hecke eigenvalues associated to Hilbert modular forms


Authors: Matthew Greenberg and John Voight
Journal: Math. Comp. 80 (2011), 1071-1092
MSC (2010): Primary 11F46, 11G18
DOI: https://doi.org/10.1090/S0025-5718-2010-02423-8
Published electronically: September 30, 2010
MathSciNet review: 2772112
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We utilize effective algorithms for computing in the cohomology of a Shimura curve together with the Jacquet-Langlands correspondence to compute systems of Hecke eigenvalues associated to Hilbert modular forms over a totally real field $ F$.


References [Enhancements On Off] (What's this?)

  • 1. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language., J. Symbolic Comput., 24 (3-4), 1997, 235-265. MR 1484478
  • 2. H. Carayol, Sur la mauvaise réduction des courbes de Shimura, Compositio Math. 59 (1986), no. 2, 151-230. MR 860139 (88a:11058)
  • 3. J. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields, Compositio Math. 51 (1984), no. 3, 275-324. MR 743014 (85j:11063)
  • 4. J. Cremona, Algorithms for modular elliptic curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193 (99e:11068)
  • 5. J. Cremona, The elliptic curve database for conductors to 130000, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, 11-29. MR 2282912 (2007k:11087)
  • 6. J. E. Cremona and M. P. Lingham, Finding all elliptic curves with good reduction outside a given set of primes, Exp. Math. 16 (2007), no. 3, 303-312. MR 2367320 (2008k:11057)
  • 7. H. Darmon, Integration on $ \mathcal{H}_p\times \mathcal{H}$ and arithmetic applications, Ann. of Math. 154 (2001), 589-639. MR 1884617 (2003j:11067)
  • 8. H. Darmon and S. Dasgupta, Elliptic units for real quadratic fields, Ann. of Math. (2) 163 (2006) no. 1, 301-346. MR 2195136 (2007a:11079)
  • 9. H. Darmon and R. Pollack, Efficient calculation of Stark-Heegner points via overconvergent modular symbols, Israel J. Math. 153 (2006), 319-354. MR 2254648 (2007k:11077)
  • 10. P. Deligne, Travaux de Shimura, Séminaire Bourbaki, Lecture Notes in Math. 244, no. 389, 123-165. MR 0498581 (58:16675)
  • 11. L. Dembélé, An algorithm for modular elliptic curves over real quadratic fields, Experiment. Math. 17 (2008), no. 4, 427-438. MR 2484426 (2010a:11119)
  • 12. L. Dembélé, Quaternionic Manin symbols, Brandt matrices and Hilbert modular forms, Math. Comp. 76 (2007), no. 258, 1039-1057. MR 2291849 (2008g:11078)
  • 13. L. Dembélé and S. Donnelly, Computing Hilbert modular forms over fields with nontrivial class group, Algorithmic Number Theory (Banff, 2008), Alfred van der Poorten and Andreas Stein, eds., Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, 371-386. MR 2467859 (2010d:11149)
  • 14. L. Dieulefait, L. Guerberoff, A. Pacetti, Proving modularity for a given elliptic curve over an imaginary quadratic field, Math. Comp. 79 (2010), 1145-1170.
  • 15. S. Donnelly and J. Voight, Tables of Hilbert modular forms and elliptic curves over totally real fields, in preparation.
  • 16. M. Eichler, Grenzkreisgruppen und kettenbruchartige Algorithmen, Acta Arith. 11 (1965), 169-180. MR 0228436 (37:4016)
  • 17. N. D. Elkies, Shimura curve computations, Algorithmic number theory (Portland, OR, 1998), J. P. Buhler, ed., Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, 1-47. MR 1726059 (2001a:11099)
  • 18. E. Freitag, Hilbert Modular Forms, Springer-Verlag, Berlin, 1990. MR 1050763 (91c:11025)
  • 19. M. Greenberg, Stark-Heegner points and the cohomology of quaternionic Shimura varieties, Duke. J. Math., 147 (2009), no. 3, 541-575. MR 2510743 (2010f:11097)
  • 20. H. Hida, On abelian varieties with complex multiplication as factors of the Jacobians of Shimura curves, American Journal of Mathematics 103 (1981), no. 4 727-776. MR 623136 (82k:10029)
  • 21. H. Hida, On $ p$-adic Hecke algebras for $ \operatorname{GL}_2$ over totally real fields, Ann. of Math. 128 (1988), 295-384. MR 960949 (89m:11046)
  • 22. H. Hida, $ p$-adic automorphic forms on Shimura varieties, Springer-Verlag, Berlin, 2004. MR 2055355 (2005e:11054)
  • 23. H. Hida, Hilbert modular forms and Iwasawa theory, Oxford Science Publications, Oxford, 2006. MR 2243770 (2007h:11055)
  • 24. H. Jacquet and R.P. Langlands, Automorphic forms on $ \operatorname{GL}(2)$, Lect. Notes in Math., vol. 114, Springer-Verlag, Berlin, 1970. MR 0401654 (53:5481)
  • 25. M. Kirschmer and J. Voight, Algorithmic enumeration of ideal classes for quaternion orders, submitted.
  • 26. Ju. I. Manin, Parabolic points and zeta functions of modular curves, Math. USSR-Izv. 6 (1972), 19-64. MR 0314846 (47:3396)
  • 27. Y. Matsushima and G. Shimura, On the cohomology groups attached to certain vector-valued differential forms on the product of the upper half-planes, Ann. of Math. 78 (1963), no. 3 417-449. MR 0155340 (27:5274)
  • 28. T. Saito, Hilbert Modular forms and $ p$-adic Hodge theory, Compos. Math. 145 (2009), no. 5, 1681-1113. MR 2551990
  • 29. M. Schütt, On the modularity of three Calabi-Yau threefolds with bad reduction at 11, Canad. Math. Bull. 49 (2006), no. 2, 296-312. MR 2226253 (2007d:11041)
  • 30. G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (1978), no. 3, 637-679. MR 507462 (80a:10043)
  • 31. G. Shimura, Construction of class fields and zeta functions of algebraic curves, Ann. of Math. (2) 85 (1967), 58-159. MR 0204426 (34:4268)
  • 32. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, Princeton University Press, Princeton, 1994. MR 1291394 (95e:11048)
  • 33. C. Skinner and A. Wiles, Residually reducible representations and modular forms, Inst. Hautes Études Sci. Publ. Math., no. 89 (1999), 5-126. MR 1793414 (2002b:11072)
  • 34. W. Stein, Modular forms, a computational approach, with an appendix by P. E. Gunnells, Grad. Studies in Math., vol. 79, Amer. Math. Soc., Providence, RI, 2007. MR 2289048 (2008d:11037)
  • 35. W. Stein and M. Watkins, A database of elliptic curves--first report, Algorithmic number theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, 267-275. MR 2041090 (2005h:11113)
  • 36. R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265-280. MR 1016264 (90m:11176)
  • 37. Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980. MR 580949 (82i:12016)
  • 38. J. Voight, Computing fundamental domains for Fuchsian groups, J. Théorie Nombres Bordeaux 21 (2009), no. 2, 469-491.MR 2541438
  • 39. J. Voight, Shimura curves of genus at most two, Math. Comp. 78 (2009), 1155-1172. MR 2476577
  • 40. J. Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, submitted.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11F46, 11G18

Retrieve articles in all journals with MSC (2010): 11F46, 11G18


Additional Information

Matthew Greenberg
Affiliation: University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
Email: mgreenbe@math.ucalgary.ca

John Voight
Affiliation: Department of Mathematics and Statistics, University of Vermont, 16 Colchester Ave, Burlington, Vermont 05401
Email: jvoight@gmail.com

DOI: https://doi.org/10.1090/S0025-5718-2010-02423-8
Received by editor(s): April 24, 2009
Received by editor(s) in revised form: February 19, 2010
Published electronically: September 30, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society