Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On the fast computation of high dimensional volume potentials

Authors: Flavia Lanzara, Vladimir Maz’ya and Gunther Schmidt
Journal: Math. Comp. 80 (2011), 887-904
MSC (2010): Primary 65D32; Secondary 65-05
Published electronically: September 22, 2010
MathSciNet review: 2772100
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A fast method of an arbitrary high order for approximating volume potentials is proposed, which is effective also in high dimensional cases. Basis functions introduced in the theory of approximate approximations are used. Results of numerical experiments, which show approximation order $ O(h^8)$ for the Newton potential in high dimensions, for example, for $ n= 200 000$, are provided. The computation time scales linearly in the space dimension. New one-dimensional integral representations with separable integrands of the potentials of advection-diffusion and heat equations are obtained.

References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publ., New York, 1968.
  • 2. G. Beylkin, R. Cramer, G. Fann, and R. J. Harrison, Multiresolution separated representations of singular and weakly singular operators, Appl. Comput. Harmon. Anal. 23 (2007), 235-253. MR 2344613 (2008m:65356)
  • 3. G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Nat. Acad. Sci. USA 99 (2002), 10246-10251. MR 1918798 (2003h:65071)
  • 4. G. Beylkin and M. J. Mohlenkamp, Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput. 26, 6 (2005), 2133-2159. MR 2196592 (2006j:65022)
  • 5. C. Bertoglio and B. N. Khoromskij, Low rank tensor-product approximation of projected Green kernels via sinc-quadratures, Preprint 79, MPI MiS 2008.
  • 6. I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Hierarchical tensor-product approximation of the inverse and related operators in high-dimensional elliptic problems, Computing 74 (2005), 131-157. MR 2133692 (2006f:65049)
  • 7. W. Hackbusch, Efficient convolution with the Newton potential in d dimensions, Numer. Math. 110 (2008), 449-489. MR 2447246 (2009i:44006)
  • 8. W. Hackbusch and B. N. Khoromskij, Tensor-product approximation to multidimensional integral operators and Green's functions, SIAM J. Matrix Anal. Appl. 30, 3 (2008), 1233-1253. MR 2447450 (2009g:45023)
  • 9. B. N. Khoromskij, Fast and accurate tensor approximation of multivariate convolution with linear scaling in dimension, Preprint 36, MPI MiS 2008: J. Comp. Appl. Math., 2010, DOI:10.1016/, to appear.
  • 10. F. Lanzara, V. Maz'ya, and G. Schmidt, Tensor product approximations of high dimensional potentials, Preprint 1403, WIAS Berlin 2009.
  • 11. V. Maz'ya, Approximate approximations, in The Mathematics of Finite Elements and Applications. Highlights 1993, J. R. Whiteman, ed., Wiley & Sons, Chichester, 1994, 77-104. MR 1291219 (95g:65137)
  • 12. V. Maz'ya and G. Schmidt ``Approximate Approximations'' and the cubature of potentials, Rend. Mat. Acc. Lincei, 6 (1995), s. 9, 161-184. MR 1363785 (96i:65017)
  • 13. V. Maz'ya and G. Schmidt, Approximate Approximations, Math. Surveys and Monographs vol. 141, AMS 2007.
  • 14. V. Maz'ya and G. Schmidt, Potentials of Gaussians and approximate wavelets, Math. Nachr. 280 (2007), no. 9-10, 1176-1189. MR 2334668 (2009b:65062)
  • 15. J. Waldvogel, Towards a general error theory of the trapezoidal rule. Approximation and Computation 2008. Nis, Serbia, August 25-29, 2008:

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65D32, 65-05

Retrieve articles in all journals with MSC (2010): 65D32, 65-05

Additional Information

Flavia Lanzara
Affiliation: Dipartimento di Matematica, Università “La Sapienza”, Piazzale Aldo Moro 2, 00185 Rome, Italy

Vladimir Maz’ya
Affiliation: Department of Mathematical Sciences, M&O Building, University of Liverpool, Liverpool L69 3BX, United Kingdom –and– Department of Mathematics, University of Linköping, 581 83 Linköping, Sweden

Gunther Schmidt
Affiliation: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Received by editor(s): November 2, 2009
Received by editor(s) in revised form: February 20, 2010
Published electronically: September 22, 2010
Additional Notes: This research was partially supported by the UK and Engineering and Physical Sciences Research Council via the grant EP/F005563/1.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society