On the fast computation of high dimensional volume potentials

Authors:
Flavia Lanzara, Vladimir Maz’ya and Gunther Schmidt

Journal:
Math. Comp. **80** (2011), 887-904

MSC (2010):
Primary 65D32; Secondary 65-05

Published electronically:
September 22, 2010

MathSciNet review:
2772100

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A fast method of an arbitrary high order for approximating volume potentials is proposed, which is effective also in high dimensional cases. Basis functions introduced in the theory of approximate approximations are used. Results of numerical experiments, which show approximation order for the Newton potential in high dimensions, for example, for , are provided. The computation time scales linearly in the space dimension. New one-dimensional integral representations with separable integrands of the potentials of advection-diffusion and heat equations are obtained.

**1.**M. Abramowitz and I. A. Stegun,*Handbook of Mathematical Functions*, Dover Publ., New York, 1968.**2.**Gregory Beylkin, Robert Cramer, George Fann, and Robert J. Harrison,*Multiresolution separated representations of singular and weakly singular operators*, Appl. Comput. Harmon. Anal.**23**(2007), no. 2, 235–253. MR**2344613**, 10.1016/j.acha.2007.01.001**3.**Gregory Beylkin and Martin J. Mohlenkamp,*Numerical operator calculus in higher dimensions*, Proc. Natl. Acad. Sci. USA**99**(2002), no. 16, 10246–10251 (electronic). MR**1918798**, 10.1073/pnas.112329799**4.**Gregory Beylkin and Martin J. Mohlenkamp,*Algorithms for numerical analysis in high dimensions*, SIAM J. Sci. Comput.**26**(2005), no. 6, 2133–2159 (electronic). MR**2196592**, 10.1137/040604959**5.**C. Bertoglio and B. N. Khoromskij, Low rank tensor-product approximation of projected Green kernels via sinc-quadratures, Preprint 79, MPI MiS 2008.**6.**Ivan P. Gavrilyuk, Wolfgang Hackbusch, and Boris N. Khoromskij,*Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems*, Computing**74**(2005), no. 2, 131–157. MR**2133692**, 10.1007/s00607-004-0086-y**7.**W. Hackbusch,*Efficient convolution with the Newton potential in 𝑑 dimensions*, Numer. Math.**110**(2008), no. 4, 449–489. MR**2447246**, 10.1007/s00211-008-0171-9**8.**Wolfgang Hackbusch and Boris N. Khoromskij,*Tensor-product approximation to multidimensional integral operators and Green’s functions*, SIAM J. Matrix Anal. Appl.**30**(2008), no. 3, 1233–1253. MR**2447450**, 10.1137/060657017**9.**B. N. Khoromskij, Fast and accurate tensor approximation of multivariate convolution with linear scaling in dimension, Preprint 36, MPI MiS 2008: J. Comp. Appl. Math., 2010, DOI:10.1016/j.cam.2010.02.004, to appear.**10.**F. Lanzara, V. Maz'ya, and G. Schmidt, Tensor product approximations of high dimensional potentials, Preprint 1403, WIAS Berlin 2009.**11.**V. Maz′ya,*Approximate approximations*, The mathematics of finite elements and applications (Uxbridge, 1993), Wiley, Chichester, 1994, pp. 77–104. MR**1291219****12.**Vladimir Maz′ya and Gunther Schmidt,*“Approximate approximations” and the cubature of potentials*, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.**6**(1995), no. 3, 161–184 (English, with English and Italian summaries). MR**1363785****13.**V. Maz'ya and G. Schmidt,*Approximate Approximations*, Math. Surveys and Monographs vol. 141, AMS 2007.**14.**Vladimir Maz′ya and Gunther Schmidt,*Potentials of Gaussians and approximate wavelets*, Math. Nachr.**280**(2007), no. 9-10, 1176–1189. MR**2334668**, 10.1002/mana.200510544**15.**J. Waldvogel, Towards a general error theory of the trapezoidal rule. Approximation and Computation 2008. Nis, Serbia, August 25-29, 2008:`http://www.math.ethz.ch/~waldvoge/Projects/integrals.html`

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
65D32,
65-05

Retrieve articles in all journals with MSC (2010): 65D32, 65-05

Additional Information

**Flavia Lanzara**

Affiliation:
Dipartimento di Matematica, Università “La Sapienza”, Piazzale Aldo Moro 2, 00185 Rome, Italy

Email:
lanzara@mat.uniroma1.it

**Vladimir Maz’ya**

Affiliation:
Department of Mathematical Sciences, M&O Building, University of Liverpool, Liverpool L69 3BX, United Kingdom –and– Department of Mathematics, University of Linköping, 581 83 Linköping, Sweden

Email:
vlmaz@mai.liu.se

**Gunther Schmidt**

Affiliation:
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

Email:
schmidt@wias-berlin.de

DOI:
https://doi.org/10.1090/S0025-5718-2010-02425-1

Received by editor(s):
November 2, 2009

Received by editor(s) in revised form:
February 20, 2010

Published electronically:
September 22, 2010

Additional Notes:
This research was partially supported by the UK and Engineering and Physical Sciences Research Council via the grant EP/F005563/1.

Article copyright:
© Copyright 2010
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.