Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

High precision computation of Riemann's zeta function by the Riemann-Siegel formula, I


Author: J. Arias de Reyna
Journal: Math. Comp. 80 (2011), 995-1009
MSC (2010): Primary 11M06, 11Y35; Secondary 65E05
DOI: https://doi.org/10.1090/S0025-5718-2010-02426-3
Published electronically: September 24, 2010
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present rigorous and sharp bounds for the terms and remainder in the Riemann-Siegel formula (for a general argument, not necessarily on the critical line). This allows for the computation of $ \zeta(s)$ and $ Z(t)$ to high precision. We also derive the Riemann-Siegel formula in a new and more direct way.


References [Enhancements On Off] (What's this?)

  • 1. J. Arias de Reyna, High precision computation of Riemann's Zeta function by the Riemann-Siegel formula, II (to appear).
  • 2. M. V. Berry, The Riemann-Siegel expansion for the zeta function: high orders and remainders, Proc. Roy. Soc. London Ser. A 450 (1995), no. 1939, 439–462. MR 1349513, https://doi.org/10.1098/rspa.1995.0093
  • 3. K. Chandrasekharan, Introduction to analytic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 148, Springer-Verlag New York Inc., New York, 1968. MR 0249348
  • 4. W. Gabcke, Neue Herleitung und explizite Restabschätzung der Riemann-Siegel Formel. Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Georg-August-Universität zu Göttingen, Göttingen, 1979.
  • 5. W. F. Galway, Analytic computation of the prime counting function, Dissertation, Urbana, Illinois. http://www.math.uiuc.edu/~galway/PhD_Thesis/
  • 6. X. Gourdon, The $ 10^{13}$ first zeros of the Riemann Zeta function, and zeros computation at very large height. http://numbers.computation.free.fr/Constants/Miscellaneous/ zetazeros1e13-1e24.pdf
  • 7. B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Akad. Berlin, 1859, 671-680. (Also in Riemann's Gesammelte Werke [8].)
  • 8. Bernhard Riemann, Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge, Teubner-Archiv zur Mathematik [Teubner Archive on Mathematics], Suppl. 1, BSB B. G. Teubner Verlagsgesellschaft, Leipzig; Springer-Verlag, Berlin, 1990 (German). Based on the edition by Heinrich Weber and Richard Dedekind; Edited and with a preface by Raghavan Narasimhan. MR 1066697
    Bernhard Riemann, Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge, Springer-Verlag, Berlin; BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1990 (German). Based on the edition by Heinrich Weber and Richard Dedekind; Edited and with a preface by Raghavan Narasimhan. MR 1084595
  • 9. C. L. Siegel, Uber Riemann's Nachlaß zur analytischen Zahlentheorie, Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik 2 (1932), 45-80. Reprinted in [10], 1, 275-310.
  • 10. Carl Ludwig Siegel, Gesammelte Abhandlungen. Bände I, II, III, Herausgegeben von K. Chandrasekharan und H. Maass, Springer-Verlag, Berlin-New York, 1966 (German). MR 0197270
  • 11. E. C. Titchmarsh, The zeros of the Riemann zeta-function, Proc. Roy. Soc. London, 151 (1935), 234-255, and 157 (1936), 261-263.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11M06, 11Y35, 65E05

Retrieve articles in all journals with MSC (2010): 11M06, 11Y35, 65E05


Additional Information

J. Arias de Reyna
Affiliation: Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080-Sevilla, Spain
Email: arias@us.es

DOI: https://doi.org/10.1090/S0025-5718-2010-02426-3
Received by editor(s): December 3, 2009
Received by editor(s) in revised form: February 25, 2010
Published electronically: September 24, 2010
Additional Notes: The author was supported by grant MTM2009-08934.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.