Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

   
 
 

 

Dilational interpolatory inequalities


Authors: Markus Hegland and Robert S. Anderssen
Journal: Math. Comp. 80 (2011), 1019-1036
MSC (2010): Primary 65J20
DOI: https://doi.org/10.1090/S0025-5718-2010-02431-7
Published electronically: October 5, 2010
MathSciNet review: 2772107
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Operationally, index functions of variable Hilbert scales can be viewed as generators for families of spaces and norms and, thereby, associated scales of interpolatory inequalities. Using one-parameter families of index functions based on the dilations of given index functions, new classes of interpolatory inequalities, dilational interpolatory inequalities (DII), are constructed. They have ordinary Hilbert scales (OHS) interpolatory inequalities as special cases. They represent a precise and concise subset of variable Hilbert scales interpolatory inequalities appropriate for deriving error estimates for peak sharpening deconvolution. Only for Gaussian and Lorentzian deconvolution do the DIIs take the standard form of OHS interpolatory inequalities. For other types of deconvolution, such as a Voigt, which is the convolution of a Gaussian with a Lorentzian, the DIIs yield a new class of interpolatory inequality. An analysis of deconvolution peak sharpening is used to illustrate the role of DIIs in deriving appropriate error estimates.


References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, London, 1975, Pure and Applied Mathematics, Vol. 65. MR 0450957 (56:9247)
  • 2. Leland C. Allen, H. M. Gladney, and S. H. Glarum, Resolution enhancement for spectra of chemical and physical interest, The Journal of Chemical Physics 40 (1964), no. 11, 3135-3141.
  • 3. Pascal Bégout and Fernando Soria, A generalized interpolation inequality and its application to the stabilization of damped equations, J. Differential Equations 240 (2007), no. 2, 324-356. MR 2351180 (2009a:35150)
  • 4. Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662 (98i:15003)
  • 5. Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1408680 (97k:65145)
  • 6. Markus Grasmair, Markus Haltmeier, and Otmar Scherzer, Sparse regularization with lq penalty term, Inverse Problems 24 (2008), no. 5, 055020 (13pp). MR 2438955 (2010a:65086)
  • 7. Charles W. Groetsch, The theory of Tikhonov regularization for Fredholm equations of the first kind, Research Notes in Mathematics, vol. 105, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 742928 (85k:45020)
  • 8. Markus Hegland, An optimal order regularization method which does not use additional smoothness assumptions, SIAM J. Numer. Anal. 29 (1992), no. 5, 1446-1461. MR 1182739 (93j:65090)
  • 9. -, Variable Hilbert scales and their interpolation inequalities with applications to Tikhonov regularization, Appl. Anal. 59 (1995), no. 1-4, 207-223. MR 1378036 (97a:65060)
  • 10. Markus Hegland and Robert S. Anderssen, A mollification framework for improperly posed problems, Numer. Math. 78 (1998), no. 4, 549-575. MR 1606320 (99d:65190)
  • 11. -, Resolution enhancement of spectra using differentiation, Inverse Problems 21 (2005), no. 3, 915-934. MR 2144811 (2006a:65196)
  • 12. Selim G. Kreĭn and Yu. I. Petunin, Scales of Banach spaces, Uspehi Mat. Nauk 21 (1966), no. 2 (128), 89-168. MR 0193499 (33:1719)
  • 13. Peter Mathé and Sergei V. Pereverzev, Geometry of linear ill-posed problems in variable Hilbert scales, Inverse Problems 19 (2003), no. 3, 789-803. MR 1984890 (2004i:47021)
  • 14. -, Regularization of some linear ill-posed problems with discretized random noisy data, Math. Comp. 75 (2006), no. 256, 1913-1929 (electronic). MR 2240642
  • 15. Peter Mathé and Ulrich Tautenhahn, Interpolation in variable Hilbert scales with application to inverse problems, Inverse Problems 22 (2006), no. 6, 2271-2297. MR 2277542
  • 16. M. Thamban Nair, Sergei V. Pereverzev, and U. Tautenhahn, Regularization in Hilbert scales under general smoothing conditions, Inverse Problems 21 (2005), no. 6, 1851-1869. MR 2183654 (2006k:47026)
  • 17. Frank Natterer, Error bounds for Tikhonov regularization in Hilbert scales, Applicable Anal. 18 (1984), no. 1-2, 29-37. MR 762862 (86e:65081)
  • 18. J.J. Olivero and R.L. Longbothum, Empirical fits to the Voigt line width: A brief review, Journal of Quantitative Spectroscopy and Radiative Transfer 17 (1977), no. 2, 233-236.
  • 19. Ronny Ramlau and Gerd Teschke, A Tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints, Numerische Mathematik 104 (2006), no. 2, 177-203. MR 2242613 (2007e:65057)
  • 20. Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York, 1973, McGraw-Hill Series in Higher Mathematics. MR 0365062 (51:1315)
  • 21. Torsten Schröter and Ulrich Tautenhahn, Error estimates for Tikhonov regularization in Hilbert scales, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 155-168. MR 1261605 (95c:65091)
  • 22. Ulrich Tautenhahn, Error estimates for regularization methods in Hilbert scales, SIAM J. Numer. Anal. 33 (1996), no. 6, 2120-2130. MR 1427456 (97k:65148)
  • 23. Paul R. Wiley, Greg J. Tanner, Peter M. Chandler, and Robert S. Anderssen, Molecular Classification of Barley (Hordeum vulgare L.) Mutants Using Derivative NIR Spectroscopy, Journal of Agricultural and Food Chemistry 57 (2009), no. 10, 4042.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65J20

Retrieve articles in all journals with MSC (2010): 65J20


Additional Information

Markus Hegland
Affiliation: Centre for Mathematics and its Applications, The Australian National University, Canberra, ACT 0200, Australia
Email: markus.hegland@anu.edu.au

Robert S. Anderssen
Affiliation: CSIRO Mathematics, Informatics and Statistics, GPO Box 664, Canberra, ACT 2601, Australia
Email: bob.anderssen@csiro.au

DOI: https://doi.org/10.1090/S0025-5718-2010-02431-7
Received by editor(s): March 18, 2008
Received by editor(s) in revised form: March 9, 2010
Published electronically: October 5, 2010
Article copyright: © Copyright 2010 CSIRO, Mathematics, Informatics and Statistics

American Mathematical Society