Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Convergence of a mixed method for a semi-stationary compressible Stokes system


Authors: Kenneth H. Karlsen and Trygve K. Karper
Journal: Math. Comp. 80 (2011), 1459-1498
MSC (2010): Primary 35Q30, 74S05; Secondary 65M12
DOI: https://doi.org/10.1090/S0025-5718-2010-02446-9
Published electronically: December 6, 2010
MathSciNet review: 2785465
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We propose and analyze a finite element method for a semi- stationary Stokes system modeling compressible fluid flow subject to a Navier-slip boundary condition. The velocity (momentum) equation is approximated by a mixed finite element method using the lowest order Nédélec spaces of the first kind, while the continuity equation is approximated by a piecewise constant upwind discontinuous Galerkin method. Our main result states that the numerical method converges to a weak solution. The convergence proof consists of two main steps: (i) To establish strong spatial compactness of the velocity field, which is intricate since the element spaces are only $ \operatorname{div}$ or $ \operatorname{curl}$ conforming. (ii) To prove the strong convergence of the discontinuous Galerkin approximations, which is required in view of a nonlinear pressure function. Some tools involved in the analysis include a higher space-time integrability estimate for the discontinuous Galerkin approximations, an equation for the effective viscous flux, various renormalized formulations of the discontinuous Galerkin method, and weak convergence arguments.


References [Enhancements On Off] (What's this?)

  • 1. S. Agmon.
    Lectures on elliptic boundary value problems.
    Van Nostrand, Princeton, 1965. MR 0178246 (31:2504)
  • 2. D. N. Arnold, R. S. Falk, and R. Winther.
    Finite element exterior calculus, homological techniques, and applications.
    Acta Numer., 15:1-155, 2006. MR 2269741 (2007j:58002)
  • 3. D. N. Arnold, R. S. Falk, and R. Winther.
    Multigrid in $ H(\operatorname{div})$ and $ H(\operatorname{curl})$.
    Numer. Math., 85(2):197-217, 2000. MR 1754719 (2001d:65161)
  • 4. S. C. Brenner and R. Scott.
    The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics.
    Springer-Verlag, New York, 2002. MR 1894376 (2003a:65103)
  • 5. S. C. Brenner, J. Cui, and L.-Y. Sung.
    A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem.
    Numer. Math., 109(4):509-533, 2008. MR 2407321 (2009c:65294)
  • 6. S. C. Brenner.
    Poincaré-Friedrichs inequalities for piecewise $ H\sp 1$ functions.
    SIAM J. Numer. Anal., 41(1):306-324 (electronic), 2003. MR 1974504 (2004d:65140)
  • 7. F. Brezzi and M. Fortin.
    Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics.
    Springer-Verlag, New York, 1991. MR 1115205 (92d:65187)
  • 8. G.-Q. Chen, D. Hoff, and K. Trivisa.
    Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data.
    Comm. Partial Differential Equations, 25(11-12):2233-2257, 2000. MR 1789926 (2001h:35141)
  • 9. B. Cockburn.
    Discontinuous Galerkin methods for convection-dominated problems.
    In High-order methods for computational physics, volume 9 of Lect. Notes Comput. Sci. Eng., pages 69-224. Springer, Berlin, 1999. MR 1712278 (2000f:76095)
  • 10. B. Cockburn and C.-W. Shu.
    Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.
    J. Sci. Comput., 16(3):173-261, 2001. MR 1873283 (2002i:65099)
  • 11. S. Christiansen.
    Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension.
    Numer. Math. 107(1):87-106, 2007. MR 2317829 (2008c:65318)
  • 12. K. Deimling.
    Nonlinear functional analysis.
    Springer-Verlag, Berlin, 1985. MR 787404 (86j:47001)
  • 13. R. J. DiPerna and P.-L. Lions.
    Ordinary differential equations, transport theory and Sobolev spaces.
    Invent. Math., 98(3):511-547, 1989. MR 1022305 (90j:34004)
  • 14. E. Feireisl.
    Dynamics of viscous compressible fluids, volume 26 of Oxford Lecture Series in Mathematics and its Applications.
    Oxford University Press, Oxford, 2004. MR 2040667 (2005i:76092)
  • 15. T. Gallouët, R. Herbin, and J.-C. Latché.
    A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case.
    Math. Comp, Online, 2009. MR 2501053 (2010c:65213)
  • 16. T. Gallouët, L. Gestaldo, R. Herbin, and J.-C. Latché.
    An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations.
    M2AN Math. Model. Numer. Anal., 42(2):303-331, 2008. MR 2405150 (2009b:76125)
  • 17. V. Girault and P.-A. Raviart.
    Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics.
    Springer-Verlag, Berlin, 1986.
    Theory and algorithms. MR 851383 (88b:65129)
  • 18. D. Hoff.
    Global existence for $ 1$D, compressible, isentropic Navier-Stokes equations with large initial data.
    Trans. Amer. Math. Soc., 303(1):169-181, 1987. MR 896014 (88k:35162)
  • 19. D. Hoff.
    Discontinuous solutions of the Navier-Stokes equations for compressible flow.
    Arch. Rational Mech. Anal., 114(1):15-46, 1991. MR 1088275 (92e:76052)
  • 20. P. Lasaint and P.-A. Raviart.
    On a finite element method for solving the neutron transport equation.
    In Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), pages 89-123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974. MR 0658142 (58:31918)
  • 21. P.-L. Lions.
    Mathematical topics in fluid mechanics. Vol. 1: Incompressible models.
    Oxford University Press, New York, 1996. MR 1422251 (98b:76001)
  • 22. P.-L. Lions.
    Mathematical topics in fluid mechanics. Vol. 2: Compressible models.
    Oxford University Press, New York, 1998. MR 1637634 (99m:76001)
  • 23. C. Liu and N. J. Walkington.
    Convergence of numerical approximations of the incompressible Navier-Stokes equations with variable density and viscosity.
    SIAM J. Numer. Anal., 45(3):1287-1304 (electronic), 2007. MR 2318813 (2008f:65177)
  • 24. J.-C. Nédélec.
    Mixed finite elements in $ {\bf R}\sp{3}$.
    Numer. Math., 35(3):315-341, 1980. MR 592160 (81k:65125)
  • 25. J.-C. Nédélec.
    A new family of mixed finite elements in $ {\bf R}\sp 3$.
    Numer. Math., 50(1):57-81, 1986. MR 864305 (88e:65145)
  • 26. W. Reed and T. Hill.
    Triangular mesh methods for the neutron transport equation.
    Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
  • 27. F. Stummel.
    Basic compactness properties of nonconforming and hybrid finite element spaces.
    RAIRO Anal. Numér., 14(1):81-115, 1980. MR 566091 (81h:65058)
  • 28. R. S. Varga.
    Matrix iterative analysis, volume 27 of Springer Series in Computational Mathematics.
    Springer-Verlag, New York, 2000. MR 1753713 (2001g:65002)
  • 29. N. J. Walkington.
    Convergence of the discontinuous Galerkin method for discontinuous solutions.
    SIAM J. Numer. Anal., 42(5):1801-1817 (electronic), 2005. MR 2139223 (2006b:65147)
  • 30. R. Zarnowski and D. Hoff.
    A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow.
    SIAM J. Numer. Anal., 28(1):78-112, 1991. MR 1083325 (92d:65176)
  • 31. J. Zhao and D. Hoff.
    A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow.
    SIAM J. Numer. Anal., 31(5):1289-1311, 1994. MR 1293516 (95j:65105)
  • 32. J. J. Zhao and D. Hoff.
    Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations.
    In Nonlinear evolutionary partial differential equations (Beijing, 1993), volume 3 of AMS/IP Stud. Adv. Math., pages 625-631. Amer. Math. Soc., Providence, RI, 1997. MR 1468542

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35Q30, 74S05, 65M12

Retrieve articles in all journals with MSC (2010): 35Q30, 74S05, 65M12


Additional Information

Kenneth H. Karlsen
Affiliation: Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway and Center for Biomedical Computing, Simula Research Laboratory, P.O. Box 134, N–1325 Lysaker, Norway
Email: kennethk@math.uio.no

Trygve K. Karper
Affiliation: Centre of Mathematics for Applications, University of Oslo, P.O. Box 1053, Blindern, N–0316 Oslo, Norway
Email: t.k.karper@cma.uio.no

DOI: https://doi.org/10.1090/S0025-5718-2010-02446-9
Keywords: Semi-stationary Stokes system, compressible fluid flow, Navier-slip boundary condition, mixed finite element method, discontinuous Galerkin method, convergence
Received by editor(s): April 4, 2009
Received by editor(s) in revised form: April 28, 2010
Published electronically: December 6, 2010
Additional Notes: The authors thank the anonymous referees for many valuable comments leading to improvements in the paper. This work was supported by the Research Council of Norway through an Outstanding Young Investigators Award (K. H. Karlsen). This article was written as part of the international research program on Nonlinear Partial Differential Equations at the Centre for Advanced Study at the Norwegian Academy of Science and Letters in Oslo during the academic year 2008–09.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society