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FAST EVALUATION OF MODULAR FUNCTIONS

USING NEWTON ITERATIONS AND THE AGM

RÉGIS DUPONT

Abstract. We present an asymptotically fast algorithm for the numerical
evaluation of modular functions such as the elliptic modular function j. Our al-
gorithm makes use of the natural connection between the arithmetic-geometric
mean (AGM) of complex numbers and modular functions. Through a detailed
complexity analysis, we prove that for a given τ , evaluating N significative bits
of j(τ) can be done in time O(M(N) logN), where M(N) is the time com-
plexity for the multiplication of two N-bit integers. However, this is only true
for a fixed τ and the time complexity of this first algorithm greatly increases as
Im(τ) does. We then describe a second algorithm that achieves the same time
complexity independently of the value of τ in the classical fundamental do-
main F . We also show how our method can be used to evaluate other modular
forms, such as the Dedekind η function, with the same time complexity.

1. Introduction

In this article, we study the complexity of the numerical evaluation of modular
functions at complex values: given an element τ lying in F = {z ∈ C : Im(z) > 0 ,
|z| ≥ 1, |Re(z)| ≤ 1/2} and an integer N ≥ 0, we investigate the time complexity
for the evaluation of N significative bits of modular functions such as j at τ . Our
main result is a constructive proof of the following theorem.

Theorem. Given an integer N ≥ 0 and an element τ ∈ F , one can compute J ∈ C

such that ∣∣∣∣j(τ )− J

j(τ )

∣∣∣∣ ≤ 1

2N

in time O (M(N) logN), where M(N) is the time complexity for the multiplication
of two N-bit integers.1

This work was motivated in part by applications such as the computation of
Hilbert class polynomials [7] and the computation of modular polynomials [8],
where it can be necessary to evaluate modular functions to precision in the tens of
thousands of bits.

We begin by recalling a few facts about modular functions and theta constants
before giving a first (näıve) algorithm for the evaluation of a class of modular func-

tions with a running time in O(M(N)
√
N), where N is the required precision.Then
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we study some properties of the arithmetic-geometric mean (AGM), show how it
can be used to evaluate a particular modular function using Newton iterations and
give a first algorithm in which time complexity is thoroughly analyzed. This first
algorithm achieves the announced complexity in O(M(N) logN) but only in the
case where τ is fixed. We then propose a second algorithm having the same run-
ning time, independently of the value of τ ∈ F . Finally, we show how this method
can be used to evaluate other modular functions or forms, such as the Dedekind η
function, and we give some experimental results.

An important feature of our algorithm is that it can be generalized to genus 2
(see the forthcoming [6]).

2. Modular functions and theta constants

2.1. Modular functions. In this section, we briefly recall a few facts about mod-
ular functions and fix some notation. We refer the reader to [15] for a complete
introduction to the theory of modular functions.

Throughout this paper, we let H denote the Poincaré half-plane H = {z ∈ C :
Im(z) > 0}. For τ ∈ H, we let q = q(τ ) = exp(iπτ ) (note that this differs from
modern conventions, where an extra factor of 2 is added). We denote by Γ the full
elliptic modular group, that is the quotient of SL2(Z) by 〈−I〉, and from now on
we identify a matrix in SL2(Z) with its class in Γ. The action of Γ on H is given by(

a b
c d

)
τ =

aτ + b

cτ + d
,

for every
(
a b
c d

)
∈ Γ and τ ∈ H.

If we introduce the region F ⊂ H,

F = {τ ∈ H : |Re(τ )| ≤ 1/2, |τ | ≥ 1} ,
then F \ (∂F ∩ {τ ∈ H : Re(τ ) > 0}) is a fundamental domain for the action of Γ
on H.

We also introduce the generators S and T of Γ, defined by

S =

(
0 −1
1 0

)
and

T =

(
1 1
0 1

)
,

so that for every τ ∈ H, Tτ = τ + 1 and Sτ = −1/τ .
If Γ′ is a subgroup of finite index of Γ, then a function f : H → C is said to be

modular for Γ′ if it is meromorphic on H, invariant under the action induced by Γ′

(i.e., for all γ ∈ Γ′ and τ ∈ H, f(γτ ) = f(τ )), and meromorphic at the cusps.

2.2. Theta constants with characteristic 2. The so-called theta constants with
characteristic 2 are the three functions defined, for τ ∈ H and q = exp(iπτ ), by

θ00(τ ) =
∑
n∈Z

qn
2

,

θ01(τ ) =
∑
n∈Z

(−1)nqn
2

,
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and
θ10(τ ) =

∑
n∈Z

q(n+
1
2 )

2

.

For an extensive treatment of these functions, we refer the reader to [14] or [16],
which contain the proofs of all the few properties we now state (we only give proofs
when elementary ones exists, that we are aware of).

Proposition 1. The functions θ00, θ01, and θ10 are analytic on H and do not
vanish.

Proof. That these functions are analytic on H follows from their definition as q-
series. That they do not vanish on H follows from [14, Lemma 4.1]. �
Proposition 2. For all τ ∈ H,

θ200(Sτ ) = −iτθ200(τ ),

θ201(Sτ ) = −iτθ210(τ ),

θ210(Sτ ) = −iτθ201(τ ).

Proof. See [16, pp. 103–105]. �
Proposition 3. For all τ ∈ H,

θ400(τ ) = θ401(τ ) + θ410(τ ).

Proof. See [16, pp. 71–76]. �
Proposition 4.

lim
Im(τ)→+∞

θ00(τ ) = 1,

lim
Im(τ)→+∞

θ01(τ ) = 1,

and
lim

Im(τ)→+∞
θ10(τ ) = 0.

Proof. This is easily proven from the definitions of the theta functions as q-series.
�

Proposition 5. For all τ ∈ H,

θ200(2τ ) =
θ200(τ ) + θ201(τ )

2
and

θ201(2τ ) = θ00(τ )θ01(τ ).

Proof. This is easily derived from the definitions of θ00 and θ01, using the identity
2(n2 +m2) = (n+m)2 + (n−m)2. �
Proposition 6. For all τ ∈ H,

4
d

dτ
log

θ10
θ01

(τ ) = iπθ400(τ ),

4
d

dτ
log

θ00
θ01

(τ ) = iπθ410(τ ),

4
d

dτ
log

θ10
θ00

(τ ) = iπθ401(τ ).
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Proof. See [16, p. 82]. �

2.3. The functions k and k′. Jacobi’s functions k and k′ are defined, for τ ∈ H,
by

(1) k(τ ) =

(
θ10(τ )

θ00(τ )

)2

and

(2) k′(τ ) =

(
θ01(τ )

θ00(τ )

)2

.

From Propositions 2 and 3, it follows directly that, for all τ ∈ H,

• k2(τ ) + k′2(τ ) = 1,
• k(Sτ ) = k′(τ ) and k′(Sτ ) = k(τ ).

Moreover, k′ and k are modular functions:

Proposition 7. The functions k′ and k are modular for the groups Γk′ and Γk,
where

Γk′ =

{(
a b
c d

)
∈ Γ : a ≡ d ≡ 1 mod 4, b ≡ 0 mod 2, c ≡ 0 mod 4

}
and

Γk =

{(
a b
c d

)
∈ Γ : a ≡ d ≡ 1 mod 4, b ≡ 0 mod 4, c ≡ 0 mod 2

}
.

Moreover, if

F ′ = {τ ∈ H : |Re(z)| < 1, |2τ + 1| > 1, |2τ − 1| > 1} ,
then

k′(F ′) = k(F ′) = {z ∈ C \ {0, 1} : Re(z) > 0} ,
and the real part of k(τ ) (resp. of k′(τ )) vanishes on the boundary of F ′.

Proof. The results for k′ are proved in [4, Lemmata 2.7 and 2.8]. The results for k
follow easily, using k(τ ) = k′(Sτ ) and the identities Γk = SΓk′S and SF ′ = F ′. �

Finally, the well-known elliptic modular function j (modular for the full group
Γ) can be defined by

(3) j(τ ) = 256

(
1− k′2 (τ ) + k′4 (τ )

)3
k′4 (τ ) (1− k′2 (τ ))

2 .

(see [2, pages 112–116] for a proof of the fact that j is indeed modular for Γ).

3. Basic evaluation of j using the Dedekind η-function

3.1. Notions of precision. Our goal in this paper is to evaluate some functions
with a given precision. We now define precisely what we mean by precision:

• We will say that α ∈ C is an approximation of a ∈ C with absolute precision
N bits if

|a− α| ≤ 1

2N
.
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• We will say that α ∈ C is an approximation of a ∈ C with relative precision
N bits if ∣∣∣∣a− α

a

∣∣∣∣ ≤ 1

2N
.

We will make use of the following facts, whose proofs are straightforward:

• If α and β are approximations of a and b ∈ C with relative precision N bits
(N ≥ 2), then αβ is an approximation of ab with relative precision N − 2
bits.

• If n ≥ 1 and α is an approximation of a ∈ C with relative precision N bits
(N ≥ n), then αn is an approximation of an with relative precision N −
n bits.

• If α �= 0 is an approximation of a ∈ C \ {0} with relative precision N bits
(N ≥ 1), then α−1 is an approximation of a−1 with relative precision
N − 1 bits.

• If α is an approximation of a ∈ C with relative precision N bits, and if
√
a

is any of the two square roots of a, then the square root of α lying in the
same quarter-plane as

√
a is an approximation of

√
a with relative precision

N bits.
• If α and β are approximations of a and b ∈ C with absolute precision N bits
(N ≥ 1), then α + β is an approximation of a + b with absolute precision
N − 1 bits.

One of the most delicate issues when studying algorithms to numerically evaluate
functions is to know to what precision each computation has to be carried out.
Due to what precedes, we know that precision losses will occur, hence the working
precision will usually have to be higher than the precision required for the result.
However, since the time cost of arithmetic operations increases with the working
precision, one should always work at the minimal possible precision ensuring that
the final result will be correct to the required precision.

In what follows, the precision at which arithmetic operations have to be carried
out is not specified in the algorithms we give, but is discussed after the description
of these algoritms.

3.2. A näıve algorithm. It is well known that the function j has a q-series ex-
pansion with integral coefficients:

j(τ ) =
1

q2
+ 744 + 169884q2 + · · · ,

the coefficients of this series being effectively computable (see for example [1]).
However, this leads to an algorithm that is quite inefficient, since the series

we consider is dense and the height of its coefficients grows quite fast: the time
complexity would be in O(M(N)N) = O(N2+ε), where N is the required precision
in bits.

A better approach is to use the functions θ00 and θ01: their q-series can indeed
be evaluated much faster than the one for j, since they are sparse with non-nil
coefficients ±1. The function k′ can be computed as the square of their quotient,
and j can then be evaluated using equation (3).

For ε ∈ {0, 1} and B ≥ 1, we define the partial sums

Sε,B(τ ) =

{
1, if B = 1,

1 + 2
∑B−1

n=1 (−1)εnqn
2

, if B ≥ 2,

for τ ∈ F .
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Notice that if τ ∈ F , then Im(τ ) ≥
√
3/2, hence |q| ≤ Q = exp(−π

√
3/2). Thus,

using the inequality ∣∣∣∣∣∣
∑
n≥B

qn
2

∣∣∣∣∣∣ ≤
|q|B

2

1− |q| ≤ 2 |q|B
2

we obtain
|θ0ε(τ )− Sε,B(τ )| ≤ 4 |q|B

2

.

Notice that in the case B = 1, this implies

|θ0ε(τ )− 1| ≤ 4 |q| ≤ 4Q ≤ 0.27,

hence θ0ε(τ ) is “close” to 1: for all τ ∈ F , any approximation of θ0ε with absolute
precision N ≥ 1 bits is also an approximation with relative precision N − 1 bits.

Now a straightforward computation shows that for all τ ∈ F , N ∈ N and ε ∈
{0, 1}, if

B ≥
√

N + 3

πIm(τ ) log2 e
,

then ∣∣∣∣θ0ε(τ )− Sε,B(τ )

θ0ε(τ )

∣∣∣∣ ≤ 1

2N

for ε ∈ {0, 1}.
This shows that Algorithm 1 can be used to evaluate θ00 and θ01.

Algorithm: EvaluateThetaNaive

input : τ ∈ F , N ∈ N

output: (θ0, θ1) such that |θ0ε(τ )− θε| / |θ0ε(τ )| ≤ 2−N for ε ∈ {0, 1}
q ← exp(iπτ );

q2 ← q2;

qa ← 1;

θ0 ← q;

θ1 ← −q;

B ← �
√
(N + 3)/(πIm(τ ) log2 e)�;

for n = 2 to M do
qa ← qaq2;

q ← qaq;

θ0 ← θ0 + q;

θ1 ← θ1 + (−1)nq;

end

θ0 ← 1 + 2θ0;

θ1 ← 1 + 2θ1;

return (θ0, θ1);

Algorithm 1: Näıve evaluation of θ00 and θ01

We now discuss the precision at which the computations have to be carried out.
From what we have seen before, the final result should be correct with absolute
precision at least N + 1 bits. Clearly, this will be achieved if all computations are
carried out at fixed precision N + 5 log2 M = O(N) bits. Since the constant π as
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well as the exponential function can be evaluated with relative precision N bits
in time O(M(N) logN), as explained in [3] for example, the time complexity of

algorithm EvaluateThetaNaive (Algorithm 1) is in O(M(N)
√
N).

We now turn to the evaluation of k′: since k′(τ ) =
(

θ01(τ)
θ00(τ)

)2

, and considering

the precision losses that can occur, Algorithm 2 can be used to evaluate k′.

Algorithm: EvaluatekpNaive

input : τ ∈ F , N ∈ N

output: kp such that |k′(τ )− kp| / |k′(τ )| ≤ 2−N

(θ0, θ1) ← EvaluateThetaNaive(τ,N + 5);

kp ← (θ1/θ0)
2;

return kp;

Algorithm 2: Näıve evaluation of k′

Clearly, algorithm EvaluatekpNaive (Algorithm 2) has time complexity in

O(M(N)
√
N).

Now j can be evaluated using equation (3). However, one must be careful about
the precision loss that can occur: as Im(τ ) increases, θ00(τ ) and θ01(τ ) will tend
to 1, hence 1− k′(τ )2 will tend to zero. More precisely, we have 1− k′2(τ ) ∼ 16q as
Im(τ ) → +∞, hence this operation can entail a big precision loss. In fact, in order
to evaluate j(τ ) with relative precision N bits, it is sufficient to have an evaluation
of k′(τ ) with relative precision N + 5Im(τ ) bits, and the algorithm is of course
straightforward.

Remark 1. The j function can also be defined by means of the Dedekind η function,
which shares a few properties with theta constants (sparse q series development,. . . ).
It then follows that using the η function q-series instead of those of the theta
constants yields another algorithm for the evaluation of j and related functions.
This algorithm is described in [7] and has the same asymptotic complexity (up to
a constant) as EvaluatekpNaive.

Remark 2. At first sight, the complexity of this method for the evaluation of j
depends on the value of Im(τ ). Note, however, that the number B of iterations

in Algorithm 1 is in
√
N/Im(τ ). In particular, if we fix some constant K > 0

and we want to evaluate the theta constants at τ ∈ F with relative precision
N ≤ KIm(τ ) bits, then the number of iterations will be bounded by a constant.
Using this remark, it is easy to see that the complexity of the evaluation of j is in
O(M(N)

√
N).

4. The arithmetic-geometric mean

4.1. Definition. Let a and b be two positive real numbers. The arithmetic-geo-
metric mean (AGM) of a and b, uncovered by Lagrange and then rediscovered and
much studied by Gauss, is the common limit of the two sequences (an) and (bn)
defined by a0 = a, b0 = b,

an+1 =
an + bn

2
and

bn+1 =
√
anbn.
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A proof of the fact that these sequences indeed converge to a common limit can
be found in [11, III, pp. 361–363] or in [2, 4].

The AGM can be extended to the case where a and b are complex numbers,
although such a generalization is not straightforward (this is mainly due to the
fact that, for every n ∈ N, bn+1 is defined as being one of the two possible square
roots of anbn, hence the sequences (an) and (bn) are not uniquely determined by a
and b). A study of the AGM for complex numbers can again be found in [11, III,
pp. 361–480] or in [4].

In order to simplify things somewhat, we only consider the case where a and b
lie in R = {z ∈ C : Re(z) > 0}. For z ∈ C, we denote by

√
z the unique square root

of z lying in R∪ R≥0.
We then define the sequences (an) and (bn) as above. We have the following

result.

Theorem 1. Let a, b ∈ R, and define the sequences (an) and (bn) as above. Then
they converge to a common limit AGM(a, b) ∈ R, and this convergence is quadratic:
for all n ∈ N,

|an+1 − bn+1| ≤
π |an − bn|2

8Min(|a| , |b|) .

Proof. For every n ∈ N, let θn ∈ [0, π[ denote the unoriented angle between an and
bn. Proposition 2.1 of [4] proves that (an) and (bn) converge to a common limit
AGM(a, b) ∈ R, and the proof also shows that

|an+1 − bn+1| ≤
|an − bn|

2

and

θn+1 ≤ θn
2
.

For n ∈ N, we have

|an+1 − bn+1| =

∣∣an + bn − 2
√
anbn

∣∣
2

=

∣∣√an −
√
bn
∣∣2

2

=
|an − bn|2

2
∣∣√an +

√
bn
∣∣2 .

Now, the unoriented angle between
√
an and

√
bn is equal to θn/2 < π/2, so that∣∣∣√an +

√
bn

∣∣∣2 = |√an|2 +
∣∣∣√bn

∣∣∣2 + 2
∣∣∣√anbn

∣∣∣ cos(θn/2)
≥ |an|+ |bn|
≥ 2Min(|an| , |bn|).

From the proof of [4, Proposition 2.1], we also have that

Min (|an| , |bn|) ≥
sin θ0
θ0

Min (|a| , |b|) ≥ 2

π
Min (|a| , |b|) ,
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whence ∣∣∣√an +
√

bn

∣∣∣2 ≥ 4

π
Min(|a| , |b|),

and finally

|an+1 − bn+1| ≤
π |an − bn|2

8Min(|a| , |b|) . �

The limit AGM(a, b) for a and b ∈ R, is again called the arithmetic-geometric
mean of a and b.

4.2. Relationship with theta constants and other properties. In order to
simplify notations, we let M : R → R denote the (univariate) AGM2 defined by
M(z) = AGM(1, z).

The key point in the study of the AGM, relating it to modular functions and
modular forms, is the following result.

Theorem 2. For τ ∈ F ′, we have

M (k′(τ )) =
1

θ200(τ )
.

Proof. Let τ ∈ H, and define the sequences (an) and (bn) by

an =
θ200(2

nτ )

θ200(τ )

and

bn =
θ201(2

nτ )

θ200(τ )
.

Proposition 4 shows that

lim
n→∞

θ00(2
nτ ) = lim

n→∞
θ01(2

nτ ) = 1,

whence

lim
n→∞

an = lim
n→∞

bn =
1

θ200(τ )
.

Since k′(τ ) =
θ2
01(τ)

θ2
00(τ)

, it is clear that a0 = 1 and b0 = k′(τ ). Moreover, Proposi-

tion 5 proves that, for any n ∈ N, we have

an+1 =
an + bn

2

and

b2n+1 = anbn.

Hence the key point in obtaining the announced result is proving that, if τ ∈ F ′,
then for any n ∈ N, an and bn lie inR. This is contained in the proof of Theorem 2.2
of [4] and more precisely in the proof of Lemma 2.9, which also makes use of
Lemmata 2.3 to 2.8. �

Proposition 8. The function M is analytic on R \ {1}.

2Considering that a univariate AGM makes sense, since the bivariate AGM is homogenous, for
all a, b ∈ C, AGM(a, b) = aAGM(1, b/a).
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Proof. We first prove that the Inverse Function Theorem can be applied to the
function k′ at any point in F ′. This is due to the fact that k′ is analytic on F ′, and
that, for all τ ∈ F ′,

dk′

dτ
(τ ) =

−iπθ201(τ )θ
4
10(τ )

2θ200(τ )
�= 0

(this expression of the derivative of k′ is obtained using Proposition 6).
Now the function 1/θ200 is also analytic on F ′, and for all τ ∈ F ′, we have

M (k′(τ )) =
1

θ200(τ )
,

hence the proposition follows from the fact that k′ is surjective from F ′ to
R \ {1}. �
Proposition 9. For τ ∈ F ′, we have

dM

dz
(k′(τ )) =

4θ′00(τ )

iπθ00(τ )θ201(τ )θ
4
10(τ )

,

where θ′00(τ ) =
dθ00
dτ (τ ).

Proof. This follows directly from the differentiation of the equality

M (k′(τ )) =
1

θ200(τ )
,

using the definition of the function k′ and Proposition 6. �

5. Evaluating k′ using Newton iterations and the AGM

In this section, we restrict our work to the case τ ∈ F . Using the same arguments
as in Section 3, it is easy to see that for all τ ∈ F ,

|k′(τ )− 1| ≤ 0.9,

hence any approximation of k′(τ ) with absolute precision N + 4 bits is also an
approximation with relative precision N bits.

5.1. A function vanishing at k′(τ ). Let τ ∈ F , since F ⊂ F ′ and SF ⊂ F ′, we
have k′(τ ) ∈ R and k′(Sτ ) ∈ R, hence using the results on k and k′ from Section 2.3

we can write k′(Sτ ) =
√
1− k′2(τ ).

Theorem 2 shows that

M (k′(τ )) =
1

θ200(τ )

and

M (k′(Sτ )) =
1

θ200(Sτ )
,

hence, using Proposition 2, we have

M (k′(τ ))

M (k′(Sτ ))
= −iτ.

We now introduce the function fτ defined for z ∈ R by

fτ (z) = iM(z)− τM
(√

1− z2
)
.

From the preceding discussion, it is clear that fτ vanishes at k′(τ ), hence the
idea to use Newton iterations on fτ in order to evaluate k′ at τ . In order to show
that this is indeed possible, we now give a few results about fτ .
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Proposition 10. The function fτ is analytic on R \ {1}.

Proof. This is a direct consequence of the definition of fτ and of Proposition 8. �

Proposition 11. For all τ ∈ F ,

dfτ
dz

(k′(τ )) =
−2

πτθ201(τ )θ
4
10(τ )

.

Proof. Differentiating the definition of fτ , we get

dfτ
dz

(z) = i
dM

dz
(z) +

τz√
1− z2

dM

dz

(√
1− z2

)
,

hence
dfτ
dz

(k′(τ )) = i
dM

dz
(k′(τ )) +

τk′(τ )

k′(Sτ )

dM

dz
(k′(Sτ )) .

Using the expression for dM
dz (k′(τ )) obtained in Proposition 9, we get

dfτ
dz

(k′(τ )) =
4θ′00(τ )

πθ00(τ )θ201(τ )θ
4
10(τ )

+
4τk′(τ )θ′00(Sτ )

iπk′(Sτ )θ00(Sτ )θ201(Sτ )θ
4
10(Sτ )

.

Now, differentiating the identity

θ200(Sτ ) = −iτθ200(τ )

gives us

2θ00(Sτ )θ
′
00(Sτ ) = −iτ2θ00(τ ) (θ00(τ ) + 2τθ′00(τ )) .

Using the equalities

k′(τ ) =
θ201(τ )

θ200(τ )

and

k′(Sτ ) = k(τ ) =
θ210(τ )

θ200(τ )
,

and the transformation formulae given in Proposition 2, we obtain the announced
result. �

We now introduce the function g : R \ {1} → C defined by

g(z) =
M(z)3

z(1− z2)

for all z ∈ R \ {1}.
It is easy to see that g is analytic on R \ {1}. Now, using the definitions of k

and k′ and Theorem 2 we have, for all τ ∈ F ,

g (k′(τ )) =
1

θ201(τ )θ
4
10(τ )

,

hence from Proposition 11

dfτ
dz

(k′(τ )) =
−2

πτ
g (k′(τ )) .
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5.2. Newton iterations for the function fτ . In this section, we fix τ ∈ F , and
write ξ = k′(τ ).

Since fτ is analytic onR and vanishes at ξ, Newton iterations on fτ are a method
of choice for the evaluation of k′ at τ . Classically, this is done by first setting z0 to
some approximation of ξ, then by considering iterations of the form

zn+1 = zn − fτ (zn)

f ′
τ (zn)

.

If z0 is sufficiently close to ξ, then the sequence (zn) will converge to ξ, and the
convergence will be quadratic.

It can be proven that if we replace f ′
τ (zn) by f ′

τ (ξ) in each iteration, then the
same result holds. However, this is usually not very useful since ξ is precisely the
quantity we want to compute. In our case, we consider iterations of the form

zn+1 = zn +
πτfτ (zn)

2g(zn)
.

The idea is that, since zn is an approximation of ξ, then −2
πτ g(zn) is an approximation

of −2
πτ g(ξ) = f ′

τ (ξ). More precisely, if we introduce the values F (τ ) and G(τ ) defined

for all τ ∈ F by3

F (τ ) = Sup
n≥2

∣∣∣∣∣ f
(n)
τ (ξ)

n!f ′
τ (ξ)

∣∣∣∣∣
1

n−1

and

G(τ ) = Sup
n≥1

∣∣∣∣g(n)(ξ)n!g(ξ)

∣∣∣∣
1
n

,

we have the following result.

Theorem 3. Let τ ∈ F and ξ = k′(τ ). Define the sequence (zn) by z0 ∈ R \ {1}
and

zn+1 = zn +
πτfτ (zn)

2g(zn)

for all n ∈ N. Then, if

|ξ − z0| ≤
1

6Max(F (τ ), G(τ ))

and

|ξ − z0| <
1

2
Min (|ξ| , |1− ξ|) ,

the sequence (zn) is well defined and we have, for all n ≥ 0,

|ξ − zn| ≤
(
1

2

)2n−1

|ξ − z0| .

In order to prove this theorem, we first prove the following lemma.

Lemma 1. Let τ ∈ F , ξ = k′(τ ), and α = Max (F (τ ), G(τ )). Then for all
z ∈ R \ {1} such that

2α |ξ − z| < 1,

3The fact that F (τ) and G(τ) are indeed finite follows from the analyticity of fτ and g.
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we have ∣∣∣∣ξ − z +
πτfτ (z)

2g(z)

∣∣∣∣ ≤ 2α |z − ξ|2

1− 2α |z − ξ| .

Proof. Let τ ∈ F , ξ = k′(τ ), and α = Max (F (τ ), G(τ )). We have∣∣∣∣ξ − z +
πτfτ (z)

2g(z)

∣∣∣∣ =
∣∣∣∣ πτ

2g(z)

∣∣∣∣ ·
∣∣∣∣fτ (z)− (z − ξ)

(
−2

πτ
g(z)

)∣∣∣∣
≤

∣∣∣∣ πτ

2g(z)

∣∣∣∣
(∣∣∣∣fτ (z)− (z − ξ)

(
−2

πτ
g(ξ)

∣∣∣∣
)

+ |z − ξ| ·
∣∣∣∣ 2

πτ

∣∣∣∣ · |g(z)− g(ξ)|
)

≤
∣∣∣∣g(ξ)g(z)

∣∣∣∣
(
|fτ (z)− (z − ξ)f ′

τ (ξ)|
|f ′

τ (ξ)|
+ |x− ξ| · |g(z)− g(ξ)|

|g(ξ)|

)
.

Now, consider the Taylor expansion for fτ at ξ:

fτ (z) = (z − ξ)f ′
τ (ξ) +

∑
n≥2

f
(n)
τ (ξ)

n!
(z − ξ)n,

hence ∣∣∣∣fτ (z)− (z − ξ)f ′
τ (ξ)

f ′
τ (ξ)

∣∣∣∣ ≤
∑
n≥2

∣∣∣∣∣ f
(n)
τ (ξ)

n!f ′
τ (ξ)

∣∣∣∣∣ · |z − ξ|n

≤
∑
n≥2

F (τ )n−1 |z − ξ|n

≤ F (τ ) |z − ξ|2

1− F (τ ) |z − ξ| ,

since, by hypothesis, F (τ ) |z − ξ| < 1.
In a similar fashion, by considering the Taylor expansion for g at ξ and using

the definition of G(τ ), we get

g(z)

g(ξ)
= 1 +

∑
n≥1

g(n)(ξ)

n!g(ξ)
(z − ξ)n,

where ∣∣∣∣∣∣
∑
n≥1

g(n)(ξ)

n!g(ξ)
(z − ξ)n

∣∣∣∣∣∣ ≤
G(τ ) |z − ξ|

1−G(τ ) |z − ξ| .

The hypothesis on |z − ξ| implies that

G(τ ) |z − ξ|
1−G(τ ) |z − ξ| < 1,

hence we get ∣∣∣∣g(ξ)g(z)

∣∣∣∣ ≤ 1

1− G(τ)|z−ξ|
1−G(τ)|z−ξ|

=
1−G(τ ) |z − ξ|
1− 2G(τ ) |z − ξ| .
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These inequalities, combined with the fact that the functions x �→ x
1−x and

x �→ 1−x
1−2x are increasing on [0, 1/2[ and the definition of α, prove that

∣∣∣∣ξ − z +
πτfτ (z)

2g(z)

∣∣∣∣ ≤ 2α |z − ξ|2

1− 2α |z − ξ| . �

Proof of Theorem 3. Let τ ∈ F , ξ = k′(τ ), α = Max (F (τ ), G(τ )), and z0 ∈ R\{1}
such that

• 6α |ξ − z0| < 1,
• |ξ − z0| < |z0|,
• |ξ − z0| < |1− z0|.

We define the sequence (zn) by

zn+1 = zn +
πτfτ (zn)

2g(zn)

for all n ∈ N, and let λ = 2α |ξ − z0|.
We now prove, by induction on n, that for all n ∈ N, zn ∈ R\1 (i.e., the sequence

is well defined), and

(4) |ξ − zn| ≤
(

λ

1− λ

)2n−1

|ξ − z0| .

This is clearly true for n = 0, we now show that if it holds for n, then it holds
for n+ 1.

Since zn ∈ R \ {1}, then zn+1 is well defined. Since 6α |ξ − z0| < 1, we have
λ

1−λ < 1, hence |ξ − zn| ≤ |ξ − z0|, and Lemma 1 can be applied to zn to show that

|ξ − zn+1| ≤
2α |ξ − zn|2

1− 2α |ξ − zn|
.

Combining this with the fact that equation (4) holds for zn, we get

|ξ − zn+1| ≤ 2α

1− 2α |ξ − zn|

((
λ

1− λ

)2n−1

|ξ − z0|
)2

≤ 2α

1− 2α |ξ − zn|

(
λ

1− λ

)2n+1−2

|ξ − z0|2

≤
(

λ

1− λ

)2n+1−1

|ξ − z0| .

Now, the condition 6α |ξ − z0| < 1 ensures that λ
1−λ < 1

2 , hence

|ξ − zn+1| ≤
(
1

2

)2n+1−1

|ξ − z0| ≤ |ξ − z0| .

Since |ξ − z0| < |ξ|
2 and |ξ − z0| < |1−ξ|

2 , then zn+1 lies in R \ {1}, and the
theorem is proved. �
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6. Algorithms and complexity results for the evaluation of k′

6.1. Evaluation of the AGM. In this section, we let z ∈ R and we denote by (an)
and (bn) the sequences associated with the computation of M(z) (letting a0 = 1
and b0 = z).

We begin by giving an upper bound on the number of AGM iterations required
in order to compute M(z) to a given relative precision.

Proposition 12. For all z ∈ R, N ∈ N, if we denote by (an) and (bn) the sequences
associated with the computation of M(z) (with a0 = 1 and b0 = z) and define nN

by

nN = Max (�log2 |log2 |z||�, 1) + �log2(N + 3)− 1�,
then anN

is an approximation of M(z) to relative precision N bits.

Proof. Let z ∈ R and N ≥ 0. As usual, we denote by (an) and (bn) the AGM
sequences associated with the computation of M(z), and we introduce the following
auxilliary sequences:

• (mn)n∈N (resp. (Mn)n∈N), defined by mn = Min (|an| , |bn|) (resp. Mn =
Max (|an| , |bn|)) for all n ≥ 0,

• (cn)n∈N defined by cn = Mn/mn for all n ≥ 0, and
• (θn)n∈N, where θn is the unoriented angle between an and bn.

The sequence (Mn) is clearly decreasing while, from the proof of Proposition 2.1
of [4],

|an+1 − bn+1| ≤
|an − bn|

2
,(5)

mn+1 ≥ mn cos
θn
2
,(6)

mn ≥ sin θ0
θ0

m0 ≥ 2

π
m0,(7)

and θn+1 ≤ θn
2 for all n ≥ 0.

We then have, for n ≥ 0,∣∣∣∣an+1

bn+1

∣∣∣∣
2

=
|an + bn|2

4 |anbn|
≤ (2Mn)

2

4Mnmn
= cn

and ∣∣∣∣ bn+1

an+1

∣∣∣∣
2

=
4 |anbn|
|an + bn|2

≤ 4Mnmn

4m2
n cos

2 θn
=

cn
cos2 θn

,

where we used the fact that

|an + bn|2 = |an|2 + |bn|2 + 2 |anbn| cos θn ≥ 2m2
n(1 + cos θn) = 4m2

n cos
2 θn.

Using the fact that θn ≤ π
2 , this proves that

(8) cn+1 ≤
√
2cn.

For all n ≥ 0, we have

|an+1 − bn+1| =
∣∣√an −

√
bn
∣∣2

2
=

|an − bn|2

2
∣∣√an +

√
bn
∣∣2 ,
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and ∣∣∣√an +
√
bn

∣∣∣2 = |an|+ |bn|+ 2

∣∣∣∣√an
√
bn cos

θn
2

∣∣∣∣
≥ 2mn

(
1 + cos

θn
2

)
= 4mn cos

2 θn
4
,

so (using the fact that θn
4 ≤ π

8 ),

(9) |an+1 − bn+1| ≤
|an − bn|2

αmn
,

where α = 8 cos2 π
8 = 4

(
1 + 1√

2

)
.

Now, let n0 = Max (�log2 |log2 |z||�, 1): since log2 c0 = |log2 |z||, then (by an
induction using equation (8)) log2 cn0

≤ 1, hence cn0
≤ 2. Moreover,

|an0
− bn0

|2 = |an0
|2 + |bn0

|2 − 2 |an0
bn0

| cos θn0
= M2

n0
+m2

n0
− 2Mn0

mn0
cos θn0

,

so that, if we use the facts that θn0
≤ π

4 and that the function x �→ x2 + 1−
√
2x

is increasing on [1, 2],

(10)
|an0

− bn0
|

mn0

=
√
c2n0

+ 1− 2cn0
cos θn0

≤
√
c2n0

+ 1−
√
2cn0

≤
√
5− 2

√
2.

A direct induction using equations (9) and (7) shows that, for all k ≥ 0,

(11) log2
|an0+k − bn0+k|
αmn0

sin θn0

θn0

≤ 2k log2
|an0

− bn0
|

αmn0

sin θn0

θn0

.

Using equation (10) (and the fact that
sin θn0

θn0
≥ 2

√
2

π ), we find that

log2
|an0

− bn0
|

αmn0

sin θn0

θn0

≤ −2,

so that (by equation (11)) for all k ≥ 0,

|an0+k − bn0+k|
mn0

sin θn0

θn0

≤ α

22k+1 ≤ 1

22k+1−3
.

We are now ready to prove the announced result. Using equation (5), one proves
that for all n ≥ 0, |M(z)− an| ≤ |an − bn|, and equation (7) shows that |M(z)| ≥
mn

sin θn
θn

for all n, so that

|M(z)− an0+k|
|M(z)| ≤ |an0+k − bn0+k|

mn0

sin θn0

θn0

≤ 1

22k+1−3
.

If we set n1 = n0 + �log2(N + 3)− 1�, then the above equation proves that an1
is

indeed an approximation of M(z) with relative precision N bits. �

This shows that Algorithm 3 can be used for the evaluation of M(z).
Note that, using Newton iterations, square roots can be extracted to relative

precision N bits in time O(M(N)) [3].
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Algorithm: EvaluateM

input : z ∈ R, N ∈ N

output: M such that |M −M(z)| / |M(z)| < 2−N

a ← 1;

b ← z;

K ← �log2 |log2 |z||�+ �log2(N + 3)�;
for k = K − 1 to 0 do

c ← a+ b;

b ←
√
ab;

a ← c/2;

end

return a;

Algorithm 3: Evaluation of the univariate AGM function M

We now discuss precision. It is easy to see that only a constant number of bits
of relative precision can be lost at each iteration, hence it is sufficient to work with
a relative precision of

N + 2 + 2nN = O (N + log |log |z||) bits,

with nN as defined in Proposition 12.
This leads to the following result.

Corollary 1. The time complexity of algorithm EvaluateM is in

O (M (N + log |log |z||) (log |log |z||+ logN)) .

If we suppose that z lies in a compact subset of R, then the complexity is in

O (M(N) logN) .

6.2. Evaluating k′ at a fixed τ ∈ F. In this section, we fix some τ ∈ F and study
the complexity of the evaluation of k′ at τ as a function of the required relative
precision N . Our algorithm is based on Theorem 3. Since precision considera-
tions will play an important role in this algorithm and its complexity, we begin by
investigating them, before describing the algorithm itself.

6.2.1. Precision considerations. We first note that if k′(τ ) is needed to relative
precision N bits, the remark from the beginning of Section 5 shows that it is
sufficient to compute an approximation to absolute precision N + 4 bits.

To evaluate k′, we will use Newton iterations on the function fτ . The validity
of our algorithm will be based on the following (slight) variant of Theorem 3.

Proposition 13. Let τ ∈ F and let (zn) and (z′n) be two sequences such that

|k′(τ )− z0| ≤ Min

(
1

10F (τ )
,

1

10G(τ )
,
|k′(τ )|

4
,
|1− k′(τ )|

4

)
,

z′0 = z0 and for all n ≥ 1,

|zn − z′n| ≤
(
1

2

)2n

|k′(τ )− z0|
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and

z′n+1 = zn +
πτfτ (zn)

2g(zn)
.

Then, for all n ≥ 0, we have

|k′(τ )− zn| ≤
(
1

2

)2n−1

|k′(τ )− z0| .

Proof. The proof mimics that of Theorem 3. �

The interest of this proposition is that the sequence (zn) used in Theorem 3
does converge to k′(τ ), but cannot be computed exactly (since algorithms can only
handle numbers with finite precision). Here, the elements of the sequence (zn)
approximate those of the sequence (z′n), hence our algorithm will use the sequence
(zn).

If we define bτ by

bτ = log2

(
Max

(
10F (τ ), 10G(τ ),

4

|k′(τ )| ,
4

|1− k′(τ )|

))
,

then Proposition 13 tells us that if z0 is an approximation of k′(τ ) to absolute
precision bτ bits and if, for all n ≥ 0, zn+1 is an approximation of

zn +
πτfτ (zn)

2g(zn)

to absolute precision at least 2n+1 + bτ bits, then for all n ≥ 0, zn is an approxi-
mation of k′(τ ) to absolute precision 2n − 1 + bτ bits. Our algorithm will compute
such a sequence (zn) to approximate k′(τ ).

We now study the precision at which computations have to be carried out to
compute zn+1 from zn. We have to compute

πτfτ (zn)

2g(zn)

to absolute precision 2n+1 +1+ bτ bits (since one bit of precision can be lost when
summing with zn).

Since zn is an approximation of k′(τ ) with absolute precision higher than bτ bits,
then, using the definitions of bτ , F (τ ), and G(τ ) and Taylor expansions as in the
proof of Lemma 1, we get

−2

πτ
g(zn) =

dfτ
dz

(k′(τ )) (1 + εg)

and

fτ (zn) = (zn − k′(τ ))
dfτ
dz

(k′(τ )) (1 + εf ),

with |εg| ≤ 1/5 and |εf | ≤ 1/5, hence∣∣∣∣πτfτ (zn)2g(zn)

∣∣∣∣ ≤ 2 |(k′(τ )− zn)| ≤
1

22n+bτ
.

Moreover, using the fact that

g (k′(τ )) =
1

θ201(τ )θ
4
10(τ )

,
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it is easy to prove (by considering the definitions of θ01 and θ10 as q-series and the

fact that Im(τ ) ≥
√
3/2 since τ ∈ F) that

1

10 |q| ≥ |g (k′(τ ))| ≥ 1

25
.

Taking into account the fact that a few bits of precision can be lost in arithmetic
operations, this shows that fτ (zn) should be computed to absolute precision

2n+1 + 4 + bτ + log2

(
25π |τ |

2

)
≤ 2n+1 + 10 + bτ + log2(|τ |) bits,

and g(zn) to absolute precision

2n + 4 + log2

(
1

10 |q|

)
≤ 2n + 1− 4Im(τ ) bits

or to relative precision 2n + 3 bits.

6.2.2. The algorithm. From the discussion above, and taking into account the few
bits of precision that can be lost through arithmetic operations, Algorithm 4 can
be used to evaluate k′(τ ).

Algorithm: Evaluatekp1

input : τ ∈ F , N ∈ N, bτ ∈ N

output: k′a such that |k′(τ )− k′a| / |k′(τ )| ≤ 2−N

z ←EvaluatekpNaive(τ , bτ );

n ← 0;

while 2n − 1 + bτ ≤ N + 4 do
a ←EvaluateM(z, 2n+1 + 12 + bτ + �log2(|τ |)�);
b ←EvaluateM(

√
1− z2, 2n+1 + 12 + bτ + 2�log2(|τ |)�);

z ← z + πτz(1−z2)(ia−τb)
2a3 ;

n ← n+ 1;

end

return z;

Algorithm 4: Evaluation of k′ using Newton iterations and the AGM

Since the precision at which the computations have to be carried out increases
(it more or less doubles at each Newton iteration), the total running time for this
algorithm is proportional to the running time for the last Newton iteration, where
n will be on the order of log2 N . The cost of that last iteration is, using results
from the last section on the complexity of the evaluation of the function M , in
O(M(N) logN). Thus we have proven the following theorem.

Theorem 4. If τ is fixed in F , then there exists an algorithm that evaluates k′(τ )
with relative precision N bits in time O(M(N) logN) = O(N1+ε).
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6.3. Evaluating k′ at any τ ∈ F. In this section we let τ vary in F and study
the complexity of the evaluation of k′ at τ as a function of τ and of the required
relative precision N . This is motivated mainly by class polynomial computation, a
natural application of our algorithms.

If we consider the algorithm introduced in the last section, then its running time
when τ varies will now also depend on τ and not only on the required precision N .
In fact two major problems arise when Im(τ ) increases:

• The value of bτ increases as well (the study of the second order derivative
of fτ at k′(τ ) shows that bτ increases at least linearly with Im(τ )). This is
not too important, since the näıve algorithm (Algorithm 2) takes a constant
number of multiplications to evaluate k′ at τ with a precision linear in
Im(τ ), as remarked in Section 3.2.

• k′(τ ) will tend to 1, hence
√
1− k′(τ )2 = k(τ ) will tend to 0. It is in fact

equivalent to 4q1/2, and if we use algorithm Evaluatekp1 (Algorithm 4)
to evaluate k′(τ ), then the computation of fτ at each step will require the

computation of M(
√
1− z2n), and since

√
1− z2n is on the order of k(τ ),

this computation will require a number of AGM iterations in O(Im(τ )+N),
where N is the required precision.

Due to these reasons, the running time of the algorithm described above, if τ
is not fixed in F , is in O(M(N + log Im(τ ))(N + log Im(τ ))). We now consider a
variant of that algorithm improving on its complexity.

The basic idea is that, if k′(τ ) is known, then θ200(τ ) can be computed as
θ200(τ ) = 1/M(k′(τ )), and since k′(τ ) = θ201(τ )/θ

2
00(τ ), so can θ201(τ ). Now, us-

ing the duplication formulae for the theta constants given in Section 2.2, θ200(2
nτ )

and θ201(2
nτ ) can also be computed, for all n ≥ 1, using n AGM iterations. This

gives an algorithm with running time in O(M(N + n)n) for the computation of
k′(2nτ ) with precision N bits, from k′(τ ).

We now define, for r > 1,

Fr = F ∩ {τ ∈ C : |τ | ≤ r}.

For all r > 1, Fr is a compact subset of F , and F (τ ) and G(τ ) are indeed
bounded on Fr, as a consequence of the following proposition.

Proposition 14. Let U be an open subset of C, h be an analytic function on U
and K be a compact subset of U where h does not vanish. Then the function H
defined on U by

H(z) = Supn≥1

∣∣∣∣h(n)(z)

n!h(z)

∣∣∣∣
1
n

is bounded on K.

Proof. Since K ⊂ U , there exists ε > 0 such that for all z ∈ K and z′ ∈ C,

|z′ − z| ≤ ε ⇒ z′ ∈ U.

Then, by the Residue Theorem, for all z ∈ K and n ≥ 1,

h(n)(z) =
1

2πi

∫
C(z,ε)

h(t)

(t− z)n+1
dt,
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where C(z, ε) is the circle of radius ε centered at z. If we let hm (resp. hM ) denote
the maximum (resp. the minimum) of the function |h(z)| on K, we then have∣∣∣∣h(n)(z)

n!h(z)

∣∣∣∣ ≤ hM

n!εnhm
≤ hM

εnhm
,

for all n ≥ 1, hence

H(z) ≤ Supn≥1

1

ε

(
hM

hm

) 1
n

≤ hM

εhm
. �

Since F (τ ) and G(τ ) are bounded on Fr, there exists Br such that for all τ ∈ Fr,

bτ ≤ Br.

Using Theorem 4, the above result implies that, for all r > 1, there exists an
algorithm that evaluates k′(τ ) with precision N bits for all τ ∈ Fr and N ∈ N in
running time O(M(N) logN).

Now, if τ ∈ F , there exists n ≤ Im(τ ) such that τ/2n ∈ F2, and k′(τ ) can be
computed either using the näıve algorithm if the required precision N is less than
n (this takes time in O(M(N))) or by first computing k′(τ/2n) and then using n
AGM iterations as seen above. This leads to Algorithm 5.

Algorithm: Evaluatekp2

input : τ ∈ F , N ∈ N, N2 ∈ N

output: k′a such that |k′(τ )− k′a| / |k′(τ )| ≤ 2−N

n ← �log2(Im(τ ))�;
if N ≤ 2n then

return EvaluatekpNaive(τ , N);

end

τ ′ ← τ/2n;

c ←Evaluatekp1(τ ′, N + 2�log2(n)�, B2);

d ←EvaluateM(c, N + 2�log2(n)�);
b ← cd;

a ← 1/d;

while n > 0 do
c ← a+ b;

b ←
√
ab;

a ← c/2;

n ← n− 1;

end

return a/b;

Algorithm 5: Evaluation of k′ (variant)

Thus we have:

Theorem 5. There exists an algorithm that, for all N ∈ N, evaluates k′(τ ) with
relative precision N bits in time O(M(N) logN) = O(N1+ε) for all τ ∈ F .
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Note that a direct consequence of this result is that Hilbert class polynomi-
als of degree h can be computed in time O(h2+ε) using root approximation and
reconstruction, as described in [7].

7. Evaluating other functions

7.1. Using modular polynomials. It is a well-known fact (see [5] for example)
that if f1 and f2 are two modular functions for two subgroups (of finite index) Γ1

and Γ2 of Γ, then there exists a polynomial Φf1,f2 ∈ C[X,Y ] such that, for all
τ ∈ H,

Φf1,f2 (f1(τ ), f2(τ )) = 0.

Such a polynomial is called a modular polynomial. As for the functions k′ and
j (for which a modular polynomial is in fact given by equation (1)), it is often the
case with “classical” modular functions that the modular polynomial linking them
together can be chosen with coefficients in Z, Q or some finite extension of Q.

We now let f be a modular function for a subgroup Γ′ of Γ, and we suppose that
a modular polynomial Φf,k′ linking f to k′ is known to an arbitrary precision. Then
for any τ ∈ F , f can be evaluated at τ by first computing the (univariate) poly-
nomial Φf,k′ (X, k′(τ )), and then by using Newton iterations on that polynomial.
This yields an algorithm in O(M(N) logN). The algorithm we gave to evaluate j
is nothing but a (very) special case of the latter.

7.2. Evaluating the Dedekind η function. The Dedekind η function can be
defined, for all τ ∈ H, by

η(τ ) = q
1
12

∏
n≥1

(1− q2n)

= q
1
12

⎛
⎝1 +

∑
n≥1

(−1)n(qn(3n−1) + qn(3n+1))

⎞
⎠ .

(The equivalence between these two definitions, known as Euler’s Pentagonal Num-
ber Theorem, is proved, for example, in [14]).

Modular invariants defined using simple or double quotients of η functions are
often used to compute class polynomials [9]. It is thus of interest to have a fast
algorithm to evaluate η.

We first note that, using Theorem 2 and the very definition of k′ (k′(τ ) =
θ201(τ )/θ

2
00(τ )), θ00 and θ01 can be evaluated at any τ ∈ F in time O(M(N) logN).

Now, using [16, pages 112–114], we have

θ00(τ ) = η(τ )f2(τ ),

where f is a modular function satisfying the modular equation

f24k′2(1− k′2) = 16.

We thus have

η12 =
k′2(1− k′2)θ200

16
,

and it is clear that this equation can be used to evaluate η in time O(M(N) logN)
(the 12-th root can be extracted using Newton iterations).
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Figure 1. Minimal precision needed to initialize algorithm
Evaluatekp1 at k′(0.25 + yi)

8. Experimental results

8.1. Precision needed in order to initialize Newton iterations on fτ . One
of the problems is that the value of bτ , which is an input to Algorithm 4 is not
known, hence the value of Bτ , which is necessary for Algorithm 5 is not known
either.

After having carried out a number of numerical experiments, we conjecture that
for all τ ∈ F ,

bτ ≤ 100 + π log2(e)Im(τ ) ≤ 100 + 4.6Im(τ ).

In order to give evidence for this conjecture, we computed the minimal preci-
sion at which the initial approximation of k′(τ ) has to be computed so that the
Newton iterations do indeed converge. Our experiments showed that that quantity
mainly depends on Im(τ ) and not much on Re(τ ). Figure 1 shows how this min-
imal precision changes as Im(τ ) changes (while Re(τ ) is fixed, equal to 0.25)This
data shows that the minimal precision increases roughly as 4.53Im(τ ), which cor-
responds to log2(|q|) (since log2(|q|) = log2(exp(−πIm(τ ))) = π log2(e)Im(τ ), and
π log2(e) � 4.5324). This is in accordance with our conjecture on the value of bτ .

8.2. Timings and comparison with the näıve algorithm. We implemented
algorithms Evaluatekp1 and EvaluatekpNaive in C, using the libraries gmp [12],
mpfr [13] and mpc [10] for the arithmetic of complex numbers.

For a fixed τ (here, τ = 0.123456789+1.23456789i), the computation time for the
evaluation of k′ using our implementation of algorithm Evaluatekp1 for a required
precision up to one million bits (on an Athlon 64 running at 2.4 GHz) is pictured
in Figure 2.

Figure 3 shows how our implementation of EvaluatekpNaive compares to that
of Evaluatekp1, on the same machine as above.
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Figure 2. Computing time for algorithm Evaluatekp1
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