Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the integers of the form $ p^2+b^2+2^n$ and $ b_1^2+b_2^2+2^{n^2}$


Authors: Hao Pan and Wei Zhang
Journal: Math. Comp. 80 (2011), 1849-1864
MSC (2010): Primary 11P32; Secondary 11A07, 11B05, 11B25, 11N36
DOI: https://doi.org/10.1090/S0025-5718-2011-02445-2
Published electronically: February 25, 2011
MathSciNet review: 2785483
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the sumset $ \{p^2+b^2+2^n: p$ is prime and $ b,n\in\mathbb{N}\} $ has positive lower density. We also construct a residue class with an odd modulus that contains no integer of the form $ p^2+b^2+2^n$. Similar results are established for the sumset $ \{b_1^2+b_2^2+2^{n^2}: b_1,b_2,n\in\mathbb{N}\}. $


References [Enhancements On Off] (What's this?)

  • 1. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of $ b^n\pm1, b=2,3,5,6,7,10,11,12$ up to High Powers, 3rd ed., Contemporary Mathematics 22, Amer. Math, Soc., Providence, RI, 2002.
  • 2. J. Brüdern and E. Fouvry, Lagrange's four squares theorem with almost prime variables, J. Reine Angew Math., 454(1994), 59-96. MR 1288679 (96e:11125)
  • 3. Y.-G. Chen, On integers of the form $ 2^n\pm p_1^{\alpha_1}\cdots p_r^{\alpha_r}$, Proc. Amer. Math. Soc., 128(2000), 1613-1616. MR 1695159 (2000j:11006)
  • 4. Y.-G. Chen, On integers of the form $ k2^n+1$, Proc. Amer. Math. Soc., 129(2001), 355-361. MR 1800230 (2003a:11004)
  • 5. Y.-G. Chen, On integers of the form $ k-2^n$ and $ k2^n+1$, J. Number Theory, 89(2001), 121-125. MR 1838707 (2002b:11020)
  • 6. Y.-G. Chen, On integers of the forms $ k^r+2^n$ and $ k^r2^n+1$, J. Number Theory, 98(2003), 310-319. MR 1955419 (2003m:11004)
  • 7. Y.-G. Chen, Five consecutive positive odd numbers, none of which can be expressed as a sum of two prime powers, Math. Comp., 74(2005), 1025-1031. MR 2114663 (2006a:11010)
  • 8. Y.-G. Chen, On integers of the forms $ k\pm 2^n$ and $ k2^n\pm1$, J. Number Theory, 125(2007), 14-25. MR 2333115 (2008e:11015)
  • 9. Y.-G. Chen, R. Feng and N. Templier, Fermat numbers and integers of the form $ a^k + a^l + p^\alpha$, Acta Arith., 135(2008), 51-61. MR 2453523 (2009h:11023)
  • 10. F. Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comp., 29(1975), 79-81. MR 0376583 (51:12758)
  • 11. R. Crocker, On the sum of a prime and two powers of two, Pacific J. Math., 36(1971), 103-107. MR 0277467 (43:3200)
  • 12. R. Crocker, On the sum of two squares and two powers of $ k$, Colloq. Math., 112(2008), 235-267. MR 2383332 (2009a:11210)
  • 13. J. G. van der Corput, On de Polignac's conjecture, Simon Stevin, 27(1950), 99-105. MR 0035298 (11:714e)
  • 14. P. Erdős, On integers of the form $ 2^k+p$ and some related problems, Summa Brasil. Math. 2(1950), 113-123. MR 0044558 (13:437i)
  • 15. H. Iwaniec, Primes of the type $ \phi(x,y)+A$ where $ \phi$ is a quadratic form, Acta Arith., 21(1972), 203-234. MR 0304331 (46:3466)
  • 16. H. Iwaniec, The half dimensional sieve, Acta Arith., 29(1976), 69-95. MR 0412134 (54:261)
  • 17. H. Iwaniec, Rosser's sieve, Acta Arith., 36 (1980), 171-202. MR 581917 (81m:10086)
  • 18. H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith., 37 (1980), 307-320. MR 598883 (82d:10069)
  • 19. H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, 4, Academic Press, London-New York, 1974. MR 0424730 (54:12689)
  • 20. E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate, Arch. Math. Phys., 13(1908), 305-312.
  • 21. F. Luca and P. Stanica, Fibonacci numbers that are not sums of two prime powers, Proc. Amer. Math. Soc., 133(2005), 1887-1890. MR 2099413 (2005k:11023)
  • 22. J.-Y. Liu, M.-C. Liu and T. Zhan, Squares of primes and powers of 2, Monatsh. Math., 128(1999), 283-313. MR 1726765 (2000k:11110)
  • 23. M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts Math. 164, Springer-Verlag, New York, 1996. MR 1395371 (97e:11004)
  • 24. G. J. Rieger, Über die Summe aus einem Quadrat und einem Primzahlquadrat, J. Reine Angew Math., 231(1968), 89-100. MR 0229603 (37:5177)
  • 25. N. Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann., 109(1934), 668-678. MR 1512916
  • 26. Z. W. Sun, On integers not of the form $ \pm p^a\pm q^b$, Proc. Amer. Math. Soc., 128(2000), 997-1002. MR 1695111 (2000i:11157)
  • 27. Z.-W. Sun and M.-H. Le, Integers not of the form $ c(2^a+2^b)+p^\alpha$, Acta Arith., 99(2001), 183-190. MR 1847620 (2002e:11043)
  • 28. Z.-W. Sun and S.-M. Yang, A note on integers of the form $ 2^n+cp$, Proc. Edinburgh Math. Soc., 45(2002), 155-160. MR 1884609 (2002j:11117)
  • 29. K.-J. Wu and Z.-W. Sun, Covers of the integers with odd moduli and their applications to the forms $ x^m-2^n$ and $ x^2-F_{3n}/2$, Math. Comp., 78(2009), 1853-1866. MR 2501080 (2010g:11019)
  • 30. P. Z. Yuan, Integers not of the form $ c(2^a +2^b)+p^\alpha$, Acta Arith., 115(2004), 23-28. MR 2102803 (2005f:11035)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11P32, 11A07, 11B05, 11B25, 11N36

Retrieve articles in all journals with MSC (2010): 11P32, 11A07, 11B05, 11B25, 11N36


Additional Information

Hao Pan
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: haopan79@yahoo.com.cn

Wei Zhang
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: zhangwei_07@yahoo.com.cn

DOI: https://doi.org/10.1090/S0025-5718-2011-02445-2
Keywords: Positive lower density, arithmetical progression, prime, square, power of 2
Received by editor(s): May 23, 2009
Received by editor(s) in revised form: April 25, 2010
Published electronically: February 25, 2011
Additional Notes: The first author is supported by the National Natural Science Foundation of China (Grant No. 10771135 and 10901078).
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society