Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems


Authors: Slimane Adjerid and Thomas Weinhart
Journal: Math. Comp. 80 (2011), 1335-1367
MSC (2010): Primary 65M60, 65N35; Secondary 35L50
DOI: https://doi.org/10.1090/S0025-5718-2011-02460-9
Published electronically: January 25, 2011
MathSciNet review: 2785461
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present an a posteriori error analysis for the discontinuous Galerkin discretization error of first-order linear symmetrizable hyperbolic systems of partial differential equations with smooth solutions. We perform a local error analysis by writing the local error as a series and showing that its leading term can be expressed as a linear combination of Legendre polynomials of degree $ p$ and $ p+1$. We apply these asymptotic results to show that projections of the error are pointwise $ \mathcal{O}(h^{p+2})$-superconvergent. We solve relatively small local problems to compute efficient and asymptotically exact estimates of the finite element error. We present computational results for several linear hyperbolic systems in acoustics and electromagnetism.


References [Enhancements On Off] (What's this?)

  • 1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
  • 2. S. Adjerid and M. Baccouch, The discontinuous Galerkin method for two-dimensional hyperbolic problems Part I: Superconvergence error analysis, Journal of Scientific Computing 33 (2007), 75-113. MR 2338333 (2008j:65189)
  • 3. -, Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem, submitted, 2009.
  • 4. -, The discontinuous Galerkin method for two-dimensional hyperbolic problems Part II: A Posteriori error estimation, Journal of Scientifc Computing 38 (2009), 15-49. MR 2472217
  • 5. S. Adjerid, K. D. Devine, J. E. Flaherty, and L. Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Computer Methods in Applied Mechanics and Engineering 191 (2002), 1097-1112. MR 1877682 (2002k:65137)
  • 6. S. Adjerid and T. C. Massey, A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems, Computer Methods in Applied Mechanics and Engineering 191 (2002), 5877-5897. MR 1942623 (2003j:65110)
  • 7. -, Superconvergence of discontinuous finite element solutions for nonlinear hyperbolic problems, Computer Methods in Applied Mechanics and Engineering 195 (2006), 3331-3346. MR 2220922 (2006k:65304)
  • 8. S. Adjerid and T. Weinhart, Asymptotically exact discontinuous Galerkin error estimates for linear symmetric hyperbolic systems, submitted, 2009.
  • 9. -, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems, Computer Methods in Applied Mechanics and Engineering 198 (2009), 3113-3129. MR 2567860
  • 10. -, Discontinuous Galerkin error estimation for linear symmetric hyperbolic systems with Lax Friedricks flux, in preparation, 2009.
  • 11. S. Benzoni-Gavage and D. Serre, Multidimensional hyperbolic partial differential equations, Oxford University Press, 2007. MR 2284507 (2008k:35002)
  • 12. Y. Cheng and C.-W. Shu, Superconvergence and time evolution of discontinuous Galerkin finite element solutions, Journal of Computational Physics 227 (2008), 9612-9627. MR 2467636 (2009k:65182)
  • 13. -, Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations, Computers $ \&$ Structures 87 (2009), 630-641.
  • 14. -, Superconvergence of discontinuous Galerkin and local discontinuous galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension, SIAM Journal on Numerical Analysis 47 (2010), 4044-4072. MR 2585178
  • 15. B. Cockburn, A simple introduction to error estimation for nonlinear hyperbolic conservation laws, Proceedings of the 1998 EPSRC Summer School in Numerical Analysis, SSCM, volume 26 of the Graduate Student's Guide for Numerical Analysis, pages 1-46 (Berlin), Springer, 1999. MR 1715030
  • 16. B. Cockburn and P. A. Gremaud, Error estimates for finite element methods for nonlinear conservation laws, SIAM Journal on Numerical Analysis 33 (1996), 522-554. MR 1388487 (97e:65096)
  • 17. B. Cockburn, S. Hou, and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comp. 54 (1990), 545-581. MR 1010597 (90k:65162)
  • 18. B. Cockburn, S. Y. Lin, and C. W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin methods of scalar conservation laws III: One dimensional systems, Journal of Computational Physics 84 (1989), 90-113. MR 1015355 (90k:65161)
  • 19. B. Cockburn and C. W. Shu, The Runge-Kutta local projection p1-discontinuous Galerkin method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér. 25 (1991), 337-361. MR 1103092 (92e:65128)
  • 20. J. R. Dormand and P. J. Prince, A family of embedded Runge-Kutta formula, Journal of Computational and Applied Mathematics 6 (1980), no. 1, 19-26. MR 568599 (81g:65098)
  • 21. R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservations laws, SIAM J. Sci. Comput. 24 (2002), 979-1004. MR 1950521 (2004b:65149)
  • 22. L. Krivodonova and J. E. Flaherty., Error estimation for discontinuous Galerkin solutions of two-dimensional hyperbolic problems, Advances in Computational Mathematics 19 (2003), 57-71. MR 1973459 (2004e:65112)
  • 23. M. Larson and T. Barth, A posteriori error estimation for adaptive discontinuous Galerkin approximation of hyperbolic systems, Proc. International Symposium on Discontinuous Galerkin Methods Theory, Computation and Applications (Berlin) (B. Cockburn, G. E. Karniadakis, and C. W. Shu, eds.), Springer, 2000. MR 1842194 (2002f:65163)
  • 24. P. LeSaint and P. Raviart, On a finite element method for solving the neutron transport equations, Mathematical Aspects of Finite Elements in Partial Differential Equations (New York) (C. de Boor, ed.), Academic Press, 1974, pp. 89-145. MR 0658142 (58:31918)
  • 25. W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, 1973.
  • 26. Uriel G. Rothblum, A representation of the Drazin inverse and characterizations of the index, SIAM Journal on Applied Mathematics 31 (1976), no. 4, 646-648. MR 0422303 (54:10294)
  • 27. J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational fluid mechanics and heat transfer, 2nd ed., Taylor & Francis, 1997.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65M60, 65N35, 35L50

Retrieve articles in all journals with MSC (2010): 65M60, 65N35, 35L50


Additional Information

Slimane Adjerid
Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

Thomas Weinhart
Affiliation: Department of Applied Mathematics, University of Twente, 7500 AE Enschede, The Netherlands

DOI: https://doi.org/10.1090/S0025-5718-2011-02460-9
Keywords: Discontinuous Galerkin method, linear hyperbolic systems, Friedrichs symmetrizable systems, \textit{a posteriori} error estimation, superconvergence.
Received by editor(s): September 10, 2009
Received by editor(s) in revised form: June 17, 2010
Published electronically: January 25, 2011
Additional Notes: This research was partially supported by the National Science Foundation (Grant Numbers DMS 0511806, DMS 0809262).
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society