Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



An improved lower bound for the de Bruijn-Newman constant

Authors: Yannick Saouter, Xavier Gourdon and Patrick Demichel
Journal: Math. Comp. 80 (2011), 2281-2287
MSC (2010): Primary 11-04, 11M26, 11Y35, 11Y60
Published electronically: March 9, 2011
MathSciNet review: 2813360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we report on computations that led to the discovery of a new Lehmer pair of zeros for the Riemann $ \zeta$ function. Given this new close pair of zeros, we improve the known lower bound for de Bruijn-Newman constant $ \Lambda$. The Riemann hypothesis is equivalent to the assertion $ \Lambda \leq 0$. In this article, we establish that in fact we have $ \Lambda > -1.14541 \times 10^{-11}$. This new bound confirms the belief that if the Riemann hypothesis is true, it is barely true.

References [Enhancements On Off] (What's this?)

  • [BBC00] J.M. Borwein, D.M. Bradley, and R.E. Crandall.
    Computational strategies for the Riemann zeta function.
    J of Comp'l and Applied Math., 121:247-296, 2000. MR 1780051 (2001h:11110)
  • [CNV88] G. Csordas, T.S. Norfolk, and R.S. Varga.
    A lower bound for the de Bruijn-Newman constant $ {\Lambda}$.
    Numer. Math., 52:483-497, 1988. MR 945095 (89m:30054)
  • [COSV93] G. Csordas, A.M. Odlyzko, W. Smith, and R.S. Varga.
    A new Lehmer pair of zeros and a new lower bound for the de Bruijn-Newman constant $ {\Lambda}$.
    Electron. Trans. Numer. Anal., 1:104-111, 1993. MR 1253639 (94k:11098)
  • [CRV91] G. Csordas, A. Ruttan, and R.S. Varga.
    The Laguerre inequalities with applications to a problem associated with the Riemann hypothesis.
    Numer. Algorithms, 1:305-329, 1991. MR 1135299 (93c:30041)
  • [CSV94] G. Csordas, W. Smith, and R.S. Varga.
    Lehmer pairs, the de Bruijn-Newman constant $ {\Lambda}$, and the Riemann hypothesis.
    Constr. Approx., 10:107-129, 1994. MR 1260363 (94k:30061)
  • [dB50] N.G. de Bruijn.
    The roots of trigonometric integrals.
    Duke J. Math., 17:197-226, 1950. MR 0037351 (12:250a)
  • [Dus98] P. Dusart.
    Autour de la fonction qui compte le nombre de nombres premiers.
    PhD thesis, Université de Limoges, 1998.
  • [FHL+07] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann.
    MPFR: A multiple-precision binary floating-point library with correct rounding.
    ACM Transactions on Mathematical Software, 33(2):13:1-13:15, June 2007. MR 2326955 (2008e:65157)
  • [GD04] X. Gourdon and P. Demichel.
    The first $ 10^{13}$ zeros of the Riemann Zeta function, and zeros computation at very large height.
    Available at 24.pdf, 2004.
  • [KKL09] H. Ki, Y.O. Kim, and J. Lee.
    On the de Bruijn-Newman constant.
    Advances in Mathematics, 22:281-306, 2009. MR 2531375 (2010d:30033)
  • [Leh70] R.S. Lehman.
    On the distribution of zeros of the Riemann zeta-function.
    Proc. London Math. Soc., 3(20):303-320, 1970. MR 0258768 (41:3414)
  • [New76] C.M. Newman.
    Fourier transforms with only real zeros.
    Proc. Amer. Math. Soc., 61:245-251, 1976. MR 0434982 (55:7944)
  • [NRV92] T.S. Norfolk, A. Ruttan, and R.S. Varga.
    A lower bound for the de Bruijn-Newman constant $ {\Lambda}$ II.
    In A.A. Gonchar and E.B. Saff, editors, Progess in Approximation Theory, 403-418. Springer-Verlag, 1992. MR 1240792 (94k:30062)
  • [Odl87] A.M. Odlyzko.
    On the distribution of spacings between zeros of the zeta function.
    Math. Comp., 48(177):273-308, 1987. MR 866115 (88d:11082)
  • [Odl00] A.M. Odlyzko.
    An improved bound for the de Bruijn-Newman constant.
    Numer. Algorithms, 25:293-303, 2000. MR 1827160 (2002a:30046)
  • [OS88] A.M. Odlyzko and A. Schönage.
    Fast algorithms for multiple evaluations of the Riemann zeta function.
    Trans. Amer. Math. Soc., 309:797-809, 1988. MR 961614 (89j:11083)
  • [Rum93] R. Rumely.
    Numerical computations concerning the ERH.
    Math. Comp., 61(203):415-440, 1993. MR 1195435 (94b:11085)
  • [Tit86] E.C. Titchmarsh.
    The theory of Riemann zeta-function.
    Oxford Univ. Press, 2nd edition, 1986. MR 882550 (88c:11049)
  • [tR91] H.J.J. te Riele.
    A new lower bound for the de Bruijn-Newman constant.
    Numer. Math., 58:661-667, 1991. MR 1083527 (92c:30030)
  • [Tru09] T. Trudgian.
    Improvements to Turing's method., March 2009.
  • [Tur53] A.M. Turing.
    Some calculations of the Riemann zeta-Function.
    Proc. London Math. Soc., 3(3):99-117, 1953. MR 0055785 (14:1126e)
  • [vdL01] J. van de Lune.
    Unpublished, 2001.
  • [Wed05] S. Wedeniwski.
    Zetagrid home page., 2005.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11-04, 11M26, 11Y35, 11Y60

Retrieve articles in all journals with MSC (2010): 11-04, 11M26, 11Y35, 11Y60

Additional Information

Yannick Saouter
Affiliation: Institut Telecom Brest, Bretagne, France

Xavier Gourdon
Affiliation: Dassault Systemes, Velizy-Villacoublay, France

Patrick Demichel
Affiliation: Hewlett-Packard France, Les Ulis, France

Received by editor(s): May 7, 2009
Received by editor(s) in revised form: August 6, 2010
Published electronically: March 9, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society