Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The impact of $ \zeta(s)$ complex zeros on $ \pi(x)$ for $ x<10^{10^{13}}$


Authors: Douglas A. Stoll and Patrick Demichel
Journal: Math. Comp. 80 (2011), 2381-2394
MSC (2010): Primary 11A41, 11M06, 11M26, 11N05
DOI: https://doi.org/10.1090/S0025-5718-2011-02477-4
Published electronically: April 1, 2011
MathSciNet review: 2813366
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An analysis of the local variations of the prime counting function $ \pi(x)$ due to the impact of the non-trivial, complex zeros $ \varrho_k$ of $ \zeta(s)$ is provided for $ x<10^{10^{13}}$ using up to 200 billion $ \zeta(s)$ complex zeros. A new bound for $ \vert\mathrm{li}(x)-\pi(x)\vert<x^{1/2}(\mathrm{log} \mathrm{log} \mathrm{log} x+e+1)/e \mathrm{log} x$ is proposed consistent with the error growth rate in Littlewood's proof that $ \mathrm{li}(x)-\pi(x)$ changes sign infinitely often. This bound is also consistent with all presently known cases where $ \pi(x)>\mathrm{li}(x)$ including many new examples listed. This implies that Littlewood's constant $ \mathrm{K}=1/e$, the lower bound for Skewes' number is $ 3.17\times 10^{114}$ and the positive constant $ c$ in the Riemann Hypothesis equivalent $ \vert\mathrm{li}(x)-\pi(x)\vert<c \mathrm{log}(x)x^{1/2}$ is less than $ 3\times 10^{-27}$.


References [Enhancements On Off] (What's this?)

  • 1. C. Bays and R. Hudson, A new bound for the smallest x with $ \pi(x)>\mathrm{li}(x)$, Math. of Comp. 69: 1285-1296, 2000. MR 1752093 (2001c:11138)
  • 2. E. B. Bogomolny, O. Bohigas, P. Leboeuf, and A.G. Monastra, On the spacing distribution of the Riemann zeros: corrections to the asymptotic result, J. Phys. A: Math Gen., 39: 10743-10754, 2006. MR 2257785 (2008b:11095)
  • 3. Brent, R.P., Irregularities in the distribution of primes and twin primes, Math. of Comp. 29: 43-56, 1975. MR 0369287 (51:5522)
  • 4. K. F. Chao and R. Plyman, A new bound for the smallest $ x$ with $ \pi(x)>\mathrm{li}(x)$, Internat. J. of Number Theory 6: 681:690, 2010. MR 2652902
  • 5. John Derbyshire, Prime Obsession, Joseph Henry Press, Washington D.C., 234, 2003. MR 1968857 (2004d:11001)
  • 6. P. Demichel, The prime counting function and related subjects, (http:/demichel.net/patrick/li_crossover_pi.pdf), 2005.
  • 7. P. Demichel, Private correspondence, Aug 2008-Aug 2009.
  • 8. P. Dusart, Autour de la fonction qui compte le nombre de nobres premiers, doctoral thesis for l'Université de Limoges, 1998.
  • 9. H. M. Edwards, Riemann's Zeta Function, Dover reprint, Toronto, (2001). MR 1854455 (2002g:11129)
  • 10. C.F. Gauss, Letter to Enke, December 24, 1849. ``Werke'', Vol. II, 444-447.
  • 11. X. Gourdon and P. Demichel, The $ 10^{13}$ first zeros of the Riemann Zeta function and zeros computation at very large height, (http://numbers. computation.free.fr/ Constants/Miscellaneous/zetazeros1e13-1e24.pdf), 2004.
  • 12. J. Hadamard, Sur la distribution des zéros de la fonction $ {\zeta}(s)$ et ses conséquences arithmetics, Bull de la Soc, math de France, 24: 199-220, 1896. MR 1504264
  • 13. A.E. Ingham. The Distribution of Prime Numbers, Cambridge Tracts in Math. and Math. Phys., 30, Press Syndicate of the University of Cambridge, New York, 86-105, 1990 reprint. MR 1074573 (91f:11064)
  • 14. H. Von Koch, Sur la distribution des nombres premiers, Acta Math. 24: 159-182, 1901. MR 1554926
  • 15. T. Kotnik, The prime-counting function and its analytic approximations, Adv. In Comp Math. 29, 55-70 (2008). MR 2420864 (2009c:11209)
  • 16. Andry V. Kulsha, Unpublished paper and tables of minimum and maximum $ {\pi}(x)$ variations, (http://www.primefan.ru/stuff/primes/table.html) (updated 7/4/2010).
  • 17. R.S. Lehman, On the difference $ {\pi(x)}-\mathrm{li}(x)$, Acta. Arith. 11: 397-410, 1966. MR 0202686 (34:2546)
  • 18. J.E. Littlewood, Sur la distribution des nombres premiers, C. R. Acad. Sci. Paris, 158: 1869-82, 1914.
  • 19. L. Panaitopol, Inequalities concerning the function $ {\pi}(x)$: applications, Acta Arith. 94: 373-381, 2000. MR 1779949 (2001g:11144)
  • 20. P. Ribenboim, The Book of Prime Number Records, $ 2^{\mathrm{nd}}$ Ed., Springer-Verlag, New York, 177, 1989. MR 1016815 (90g:11127)
  • 21. B. Riemann, Über die Anzahl der Primzahlen unter einer gegebener Grösse, Monats. Preuss. Akad. Wiss., 671-680, 1859-60.
  • 22. J.B. Rosser, and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Ill. J. of Math. 6: 64-94, 1962. MR 0137689 (25:1139)
  • 23. H. Riesel, Prime Numbers and Computer Methods for Factorization, 2 $ ^{\mathrm{nd}}$ Ed. Birkhäuser, Boston, 380-383, 1994. MR 1292250 (95h:11142)
  • 24. H. Riesel and G. Göhl, Some calculations related to Riemann's prime number formula, Math. of Comp. 24: 969-983, 1970. MR 0277489 (43:3222)
  • 25. M. Rubinstein and P. Sarnak, Chebyshev's bias, Exper. Math. 3: 173-197, 1994. MR 1329368 (96d:11099)
  • 26. Y. Saouter and P. Demichel, A sharp region where $ \pi(x)-\mathrm{li}(x)$ is positive, Math. of Comp. 79: 2395-2405, 2010. MR 2684372
  • 27. L. Schoenfeld, Sharper bounds for the Chebyshev functions $ \theta(x)$ and $ {\psi}(x)$ II, Math. of Comp. 30: 337-360, 1976. MR 0457374 (56:15581b)
  • 28. S. Skewes, On the difference $ {\pi}(x)-\mathrm{li}(x)$, J. London Math. Soc. 8: 277-283, 1933.
  • 29. S. Skewes, On the difference $ {\pi}(x)-\mathrm{li}(x)$ II, Proc. London Math. Soc. 5: 48-70, 1955. MR 0067145 (16:676c)
  • 30. T. O. e Silva, Tables of values of pi(x) and of pi2(x), (http://www. ieeta.pt/~tos/ primes.html), updated March 2010.
  • 31. H.J.J. te Riele, On the sign of the difference $ {\pi}(x)-\mathrm{li}(x)$, Math. of Comp. 48: 323-328, 1987. MR 866118 (88a:11135)
  • 32. de la Vallée Poussin, Recherches analytiques sur la théorie des nombres premiers, Ann. Soc. Sci. Bruxelles 20: 183-56, 1896.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11A41, 11M06, 11M26, 11N05

Retrieve articles in all journals with MSC (2010): 11A41, 11M06, 11M26, 11N05


Additional Information

Douglas A. Stoll
Affiliation: Boeing Research and Technology, Seattle, Washington
Email: dstoll71@comcast.net

Patrick Demichel
Affiliation: Hewlett-Packard, Les Ulis, France
Email: dmlpat@gmail.com

DOI: https://doi.org/10.1090/S0025-5718-2011-02477-4
Keywords: Skewes’ number, zeta zero distribution, Riemann Hypothesis
Received by editor(s): November 4, 2009
Received by editor(s) in revised form: August 6, 2010
Published electronically: April 1, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society