Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computing generators of free modules over orders in group algebras II


Authors: Werner Bley and Henri Johnston
Journal: Math. Comp. 80 (2011), 2411-2434
MSC (2010): Primary 11R33, 11Y40, 16Z05
DOI: https://doi.org/10.1090/S0025-5718-2011-02488-9
Published electronically: April 11, 2011
MathSciNet review: 2813368
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a number field and $ G$ a finite group. Let $ \mathcal{A}$ be any $ \mathcal{O}_{E}$-order of full rank in the group algebra $ E[G]$ and $ X$ a (left) $ \mathcal{A}$-lattice. In a previous article, we gave a necessary and sufficient condition for $ X$ to be free of given rank $ d$ over $ \mathcal{A}$. In the case that (i) the Wedderburn decomposition $ E[G] \cong \bigoplus_{\chi} M_{\chi}$ is explicitly computable and (ii) each $ M_{\chi}$ is in fact a matrix ring over a field, this led to an algorithm that either gives elements $ \alpha_{1}, \ldots, \alpha_{d} \in X$ such that $ X=\mathcal{A}\alpha_{1} \oplus \cdots \oplus \mathcal{A}\alpha_{d}$ or determines that no such elements exist. In the present article, we generalise the algorithm by weakening condition (ii) considerably.


References [Enhancements On Off] (What's this?)

  • [BB06] W. Bley and R. Boltje, Computation of locally free class groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 72-86. MR 2282916 (2007j:11162)
  • [BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265, Computational algebra and number theory (London, 1993). MR 1484478
  • [BJ08] W. Bley and H. Johnston, Computing generators of free modules over orders in group algebras, J. Algebra 320 (2008), no. 2, 836-852. MR 2422318 (2009f:16030)
  • [BS72] M. Benard and M. Schacher, The Schur subgroup II, J. Algebra 22 (1972), 378-385. MR 0302747 (46 #1890)
  • [BW09] W. Bley and S. M. J. Wilson, Computations in relative algebraic $ K$-groups, LMS J. Comput. Math. 12 (2009), 166-194. MR 2564571 (2010k:16013)
  • [Coh93] H. Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206 (94i:11105)
  • [Coh00] -, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313 (2000k:11144)
  • [Cou94] J. Cougnard, Un anneau d'entiers stablement libre et non libre, Experiment. Math. 3 (1994), no. 2, 129-136. MR 1313877 (95j:11102)
  • [Cou98] -, Anneaux d'entiers stablement libres sur $ \mathbb{Z}[H\sb 8\times C\sb 2]$, J. Théor. Nombres Bordeaux 10 (1998), no. 1, 163-201. MR 1827291 (2002a:11124)
  • [CR81] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1981, With applications to finite groups and orders, A Wiley-Interscience Publication. MR 632548 (82i:20001)
  • [CR87] -, Methods of representation theory. Vol. II, Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1987, With applications to finite groups and orders, A Wiley-Interscience Publication. MR 892316 (88f:20002)
  • [Ebe89] W. Eberly, Computations for algebras and group representations, Ph.D. thesis, University of Toronto, 1989.
  • [Fie09] C. Fieker, Minimizing representations over number fields II. Computations in the Brauer group, J. Algebra 322 (2009), no. 3, 752-765. MR 2531221 (2010e:20016)
  • [Fri00] C. Friedrichs, Berechnung von Maximalordnungen über Dedekindringen, Ph.D. thesis, Technische Universität Berlin, 2000.
  • [HM06] E. Hallouin and C. Maire, Cancellation in totally definite quaternion algebras, J. Reine Angew. Math. 595 (2006), 189-213. MR 2244802 (2007g:11146)
  • [Kle94] E. Kleinert, Units of classical orders: a survey, Enseign. Math. (2) 40 (1994), no. 3-4, 205-248. MR 1309127 (95k:11151)
  • [KV10] M. Kirschmer and J. Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM J. Comput. 39 (2010), no. 5, 1714-1747. MR 2592031
  • [NSW08] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026 (2008m:11223)
  • [Rei03] I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press Oxford University Press, Oxford, 2003, Corrected reprint of the 1975 original, With a foreword by M. J. Taylor. MR 1972204 (2004c:16026)
  • [Swa80] R. G. Swan, Strong approximation and locally free modules, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979), Lecture Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980, pp. 153-223. MR 584612 (81m:12017)
  • [Swa83] -, Projective modules over binary polyhedral groups, J. Reine Angew. Math. 342 (1983), 66-172. MR 703486 (84j:16003)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11R33, 11Y40, 16Z05

Retrieve articles in all journals with MSC (2010): 11R33, 11Y40, 16Z05


Additional Information

Werner Bley
Affiliation: Fachbereich für Mathematik und Naturwissenschaften der Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
Email: bley@mathematik.uni-kassel.de

Henri Johnston
Affiliation: St. John’s College, Cambridge CB2 1TP, United Kingdom
Email: H.Johnston@dpmms.cam.ac.uk

DOI: https://doi.org/10.1090/S0025-5718-2011-02488-9
Received by editor(s): June 23, 2010
Received by editor(s) in revised form: September 15, 2010
Published electronically: April 11, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society