Bin Zheng, Qiya Hu, and Jinchao Xu, A nonconforming finite element method for fourth order curl equations in \mathbb{R}^3 .. 1871
Andrea Bonito and Jean-Luc Guermond, Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements .. 1887
Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem .. 1911
Gabriel Acosta and María G. Armentano, Finite element approximations in a non-Lipschitz domain: Part II .. 1949
Susanne C. Brenner, Thirupathi Gudi, Michael Neilan, and Li-yeng Sung, C^0 penalty methods for the fully nonlinear Monge-Ampère equation .. 1979
Xiaobing Feng and Haijun Wu, hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number .. 1997
Carlos Castro and Enrique Zuazua, Flux identification for 1-d scalar conservation laws in the presence of shocks .. 2025
Qingshan Chen, Zhen Qin, and Roger Temam, Treatment of incompatible initial and boundary data for parabolic equations in higher dimension .. 2071
R. Donat, I. Higuera, and A. Martínez-Gavara, On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms .. 2097
Yuji Nakatsukasa, Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric .. 2127
Barry H. Dayton, Tien-Yien Li, and Zhonggang Zeng, Multiple zeros of nonlinear systems .. 2143
Hiroshi Sugiura and Takemitsu Hasegawa, A polynomial interpolation process at quasi-Chebyshev nodes with the FFT .. 2169
Georg Müntingh and Michael Floater, Divided differences of implicit functions .. 2185
Charles Knessl and Mark W. Coffey, An asymptotic form for the Stieltjes constants $\gamma_k(a)$ and for a sum $S_\gamma(n)$ appearing under the Li criterion .. 2197
A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials .. 2219
Wenchang Chu, Dougall’s bilateral $2H_2$-series and Ramanujan-like π-formulae .. 2223
Gautami Bhowmik, Immanuel Halupczok, and Jan-Christoph Schlage-Puchta, Zero-sum free sets with small sum-set .. 2253
Timothy Trudgian, Improvements to Turing’s method .. 2259
Yannick Saouter, Xavier Gourdon, and Patrick Demichel, An improved lower bound for the de Bruijn-Newman constant .. 2281
Jean-Paul Cerri, Some generalized Euclidean and 2-stage Euclidean number fields that are not norm-Euclidean .. 2289
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borislav Mezhericher</td>
<td>Evaluating Whittaker functions and Maass forms for $SL(3,\mathbb{Z})$</td>
<td>2299</td>
</tr>
<tr>
<td>José María Grau and Antonio M. Oller-Marcén</td>
<td>An $\mathcal{O}(\log^2(N))$ time primality test for generalized Cullen numbers</td>
<td>2315</td>
</tr>
<tr>
<td>Felix Fontein</td>
<td>The infrastructure of a global field of arbitrary unit rank</td>
<td>2325</td>
</tr>
<tr>
<td>Andrew Arnold and Michael Monagan</td>
<td>Calculating cyclotomic polynomials</td>
<td>2359</td>
</tr>
<tr>
<td>Douglas A. Stoll and Patrick Demichel</td>
<td>The impact of $\zeta(s)$ complex zeros on $\pi(x)$ for $x < 10^{10^{13}}$</td>
<td>2381</td>
</tr>
<tr>
<td>Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee</td>
<td>Families of elliptic curves over quartic number fields with prescribed torsion subgroups</td>
<td>2395</td>
</tr>
<tr>
<td>Werner Bley and Henri Johnston</td>
<td>Computing generators of free modules over orders in group algebras II</td>
<td>2411</td>
</tr>
<tr>
<td>J. P. Buhler and D. Harvey</td>
<td>Irregular primes to 163 million</td>
<td>2435</td>
</tr>
<tr>
<td>Giedrius Alkauskas</td>
<td>Addenda and corrigenda to “The Minkowski question mark function: explicit series for the dyadic period function and moments”</td>
<td>2445</td>
</tr>
</tbody>
</table>
INDEX TO VOLUME 80 (2011)

Acosta, Gabriel, Thomas Apel, Ricardo G. Durán, and Ariel L. Lombardi. Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra, 141

Acosta, Gabriel, and María G. Armentano. Finite element approximations in a non-Lipschitz domain: Part II, 1949

Adcock, Ben. Convergence acceleration of modified Fourier series in one or more dimensions, 225

Adjerid, Slimane, and Thomas Weinhart. Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems, 1335

Alkauskas, Giedrius. Addenda and corrigenda to “The Minkowski question mark function: explicit series for the dyadic period function and moments”, 2445

Allendes, Alejandro, Gabriel R. Barrenechea, Erwin Hernández, and Frédéric Valentin. A two-level enriched finite element method for a mixed problem, 11

Amat, S., K. Dadourian, and J. Liandrat. On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards C^s functions with $s > 1$, 959

Anderssen, Robert S. See Hegland, Markus

Anderssen, R. S. See de Hoog, F. R.

Apel, Thomas. See Acosta, Gabriel

Argyros, Ioannis K. A semilocal convergence analysis for directional Newton methods, 327

Ariyawansa, K. A., and Yuntao Zhu. A class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programming, 1639

Armentano, María G. See Acosta, Gabriel

Arnold, Andrew, and Michael Monagan. Calculating cyclotomic polynomials, 2359

Baldoni, Velleda, Nicole Berline, Jesus A. De Loera, Matthias Köppe, and Michèle Vergne. How to integrate a polynomial over a simplex, 297

Barrenechea, Gabriel R. See Allendes, Alejandro

Bartels, Sören, and Rüdiger Müller. Quasi-optimal and robust a posteriori error estimates in $L^\infty(L^2)$ for the approximation of Allen-Cahn equations past singularities, 761

Bayad, A. Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, 2219

Beck, Matthias, and Andrew van Herick. Enumeration of 4×4 magic squares, 617

Beckermann, Bernhard, Valeriya Kalyagin, Ana C. Matos, and Franck Wielonsky. How well does the Hermite–Padé approximation smooth the Gibbs phenomenon?, 931

Berline, Nicole. See Baldoni, Velleda

Bhoumik, Gautami, Immanuel Halupczok, and Jan-Christoph Schlage-Puchta. Zero-sum free sets with small sum-set, 2253

Björn, Anders, and Hans Riesel. Table errata 2 to “Factors of generalized Fermat numbers”, 1865

Bley, Werner, and Henri Johnston. Computing generators of free modules over orders in group algebras II, 2411

Bonito, Andrea, and Jean-Luc Guermond. Approximation of the eigenvalue problem over orders in group harmonic Maxwells system by continuous Lagrange finite elements, 1887

Boonyasiriwat, C., K. Sikorski, and C. Tsay. Circumscribed ellipsoid algorithm for fixed-point problems, 1703

Bos, L., J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello. Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points, 1623

Bovdi, V. A., E. Jespers, and A. B. Konovalov. Torsion units in integral group rings of Janko simple groups, 593

Brenner, Susanne C., Thirupathi Gudi, Michael Neilan, and Li-yeng Sung. C^0 penalty methods for the fully nonlinear Monge-Ampère equation, 1979

Brouwer, Andries E., and Jan Draisma. Equivariant Gröbner bases and the Gaussian two-factor model, 1123

Buhler, J. P., and D. Harvey. Irregular primes to 163 million, 2435

Calvi, J.-P. See Bos, L

Carstensen, Carsten, and Hella Rabus. An optimal adaptive mixed finite element method, 649
Castro, Carlos, and Enrique Zuazua. *Flux identification for 1-d scalar conservation laws in the presence of shocks*, 2025

Cerri, Jean-Paul. *Some generalized Euclidean and 2-stage Euclidean number fields that are not norm-Euclidean*, 2289

Chen, Qingshan, Zhen Qin, and Roger Temam. *Treatment of incompatible initial and boundary data for parabolic equations in higher dimension*, 2071

Cheng, Xiaoliang. *See Hu, Xiaozhe*

Chu, Wenchang. *Dougall’s bilateral 2H₂-series and Ramanujan-like π-formulae*, 2223

Cockburn, Bernardo, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas. *Analysis of HDG methods for Stokes flow*, 723

Coffey, Mark W. *See Knessl, Charles*

Couplonbel, Jean-François, and Antoine Gloria. *Semigroup stability of finite difference schemes for multidimensional hyperbolic initial-boundary value problems*, 165

Currie, James, and Narad Rampersad. *A proof of Dejean’s conjecture*, 1063

Daydourian, K. *See Amat, S.*

Dayton, Barry H., Tien-Yien Li, and Zhonggang Zeng. *Multiple zeros of nonlinear systems*, 2143

De Loera, Jesus A. *See Baldoni, Velleda*

Demichel, Patrick. *See Saouter, Yannick*

Demlow, Alan, Johnny Guzmán, and Alfred H. Schatz. *Local energy estimates for the finite element method on sharply varying grids*, 1

Dick, Josef, Gerhard Larcher, Friedrich Pillichshammer, and Henryk Woźniakowski. *Exponential convergence and tractability of multivariate integration for Korobov spaces*, 905

Diehl, Claus. *On the discrete logarithm problem in class groups of curves*, 443

Donat, R., I. Higueras, and A. Martínez-Gavara. *On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms*, 2097

Dubois, Steven, Andries E. *Free multiplication of modular functions using Newton iterations and the AGM*, 1823

Dupont, Régis. *Fast evaluation of modular functions using Newton iterations and the AGM*, 1823

Duran, Ricardo G., Rodolfo Rodríguez, and Frank Sanhueza. *Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate*, 1239

Eichel, Hagen, Lutz Tobiska, and Hehu Xie. *Superconvergence and superconvergence of stabilized low-order finite element discretizations of the Stokes Problem*, 697

Feng, Xiaobing, and Michael Neilan. *Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors*, 1303

Feng, Xiaobing, and Haijun Wu. *hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number*, 1997

Floater, Michael. *See Muntingh, Georg*

Fontaine, Felix. *The infrastructure of a global field of arbitrary unit rank*, 2325

Friedman, J. S., J. Jorgenson, and J. Kramer. *An effective bound for the Huber constant for cofinite Fuchsian groups*, 1163

Fukushima, Toshio. *Precise and fast computation of the general complete elliptic integral of the second kind*, 1725

Gloria, Antoine. See Coulombel, Jean-François

Gopalakrishnan, Jayadeep. See Cockburn, Bernardo

Gourdon, Xavier. See Saouter, Yannick

Grau, José María, and Antonio M. Oller-Marcén. *An $O(\log^2(N))$ time primality test for generalized Cullen numbers*, 2315

Greenberg, Matthew, and John Voight. *Computing systems of Hecke eigenvalues associated to Hilbert modular forms*, 1071

Gudi, Thirupathi. See Brenner, Susanne C.

Hauenstein, Jonathan D., Andrew J. Sommese, and Charles W. Wampler. *Regeneration homotopies for solving systems of polynomials*, 345

Hiary, Ghaith A. *An amortized-complexity method to compute the Riemann zeta function*, 1785

Higueras, I. See Donat, R.

Higueras, I. See Donat, R.

Hjørungnes, A. *An amortized-complexity method to compute the Riemann zeta function*, 1785

Higueras, I. See Donat, R.

Hilbert, David. *Faster algorithms for the square root and reciprocal of power series*, 387

Hin，并 Herick, Andrew. See Beck, Matthias

Hernández, Erwin. See Allendes, Alejandro

Hesthaven, Jan S. See Narayan, Akil C.

Hiary, Ghaith A. *An amortized-complexity method to compute the Riemann zeta function*, 1785

Higueras, I. See Donat, R.

de Hoog, F. R., R. S. Anderssen, and M. A. Lukas. *Differentiation of matrix functionals using triangular factorization*, 1585

Hu, Qiya. See Zheng, Bin

Hulme, Alexander, Petteri Kaski, and Patric R. J. Östergård. *The number of Latin squares of order 11*, 1197

Hundsdorfer, W., and M. N. Spijker. *Boundedness and strong stability of Range-Kutta methods*, 863

Iserles, Arieh, and David Levin. *Asymptotic expansion and quadrature of composite highly oscillatory integrals*, 279

Jeon, Daeyeol, Chang Heon Kim, and Yoonjin Lee. *Families of elliptic curves over cubic number fields with prescribed torsion subgroups*, 579

Jespers, E. See Bovdi, V. A.

Jia, Rong-Qing, and Wei Zhao. *Riesz bases of wavelets and applications to numerical solutions of elliptic equations*, 1525

Johnston, Henri. See Bley, Werner

Jokhadze, O. See Berikelashvili, G.

Jorgenson, J. See Friedman, J. S.

Kalaygin, Valeriy. See Beckermann, Bernhard

Karlsen, Kenneth H. See Holden, Helge

Karper, Trygve K. See Karlsen, Kenneth H.
Kaski, Petteri. See Hulpke, Alexander
Kharibegashvili, S. See Berikelashvili, G.
Kim, Chang Heon. See Jeon, Daeyeol
Knesl, Charles, and Mark W. Coffey. An effective asymptotic formula for the Stieltjes constants, 379
Knessl, Charles, and Mark W. Coffey. An asymptotic form for the Stieltjes constants \(\gamma_k(a) \) and for a sum \(S_\gamma(n) \) appearing under the Li criterion, 2197
Konovalov, A. B. See Bovdi, V. A.
Köppe, Matthias. See Baldoni, Velleda
Kornhuber, Ralf, and Qingsong Zou. Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems, 69
Kramer, J. See Friedman, J. S.
Kreuzer, Martin, and Henk Poulisse. Subideal border bases, 1135
Krylov, Nicolai. See Gyöngy, István
Kucuksakalli, Omer. Class numbers of ray class fields of imaginary quadratic fields, 1099
Lanphier, Dominic. Values of symmetric cube \(L \)-functions and Fourier coefficients of Siegel Eisenstein series of degree-3, 409
Lanzara, Flavia, Vladimir Maz’ya, and Gunther Schmidt. On the fast computation of high dimensional volume potentials, 887
Larcher, Gerhard. See Dick, Josef
Le Gia, Q. T. See Ganesh, M.
Lee, Yoonjin. See Jeon, Daeyeol
Levenberg, N. See Bos, L.
Levin, David. See Iserles, Arieh
Li, Chi-Kwong, Yiu-Tung Poon, and Thomas Schulte-Herbrüggen. Least-squares approximation by elements from matrix orbits achieved by gradient flows on compact Lie groups, 1601
Li, Tien-Yien. See Dayton, Barry H.
Li, Xianjuan. See Lin, Yumin
Liandrat, J. See Amat, S.
Lin, Yumin, Xianjuan Li, and Chuanju Xu. Finite difference/spectral approximations for the fractional cable equation, 1369
Lombardi, Ariel L. See Acosta, Gabriel
Louboutin, Stéphane R. Upper bounds for residues of Dedekind zeta functions and class numbers of cubic and quartic number fields, 1813
Luca, Florian, and Filip Najman. On the largest prime factor of \(x^2 - 1 \), 429
Lukas, M. A. See de Hoog, F. R.
Martínez-Gavara, A. See Donat, R.
Matos, Ana C. See Beckermann, Bernhard
Matsumoto, Makoto. See Harase, Shin
Maz’ya, Vladimir. See Lanzara, Flavia
McCall, C. K. See Beers, J.
McKee, James. Computing totally positive algebraic integers of small trace, 1041
Meddahi, Salim, Francisco-Javier Sayas, and Virginia Selgas. Nonsymmetric coupling of BEM and mixed FEM on polyhedral interfaces, 43
Mekchay, Khamron, Pedro Morin, and Ricardo H. Nochetto. AFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property, 625
Melcher, Christof. See Condette, Nicolas
Mezhericher, Borislav. Evaluating Whittaker functions and Maass forms for \(SL(3, \mathbb{Z}) \), 2299
Midodashvili, B. See Berikelashvili, G.
Monagan, Michael. See Arnold, Andrew
Moree, Pieter. See Gallo, Yves
Morin, Pedro. See Mekchay, Khamron
Mortici, Cristinel. Sharp bounds of the Landau constants, 1011
Mulay, S. B. See Beers, J.
Müller, Rüdiger. See Bartels, Sören
Muntingh, Georg, and Michael Floater. Divided differences of implicit functions, 2185
Najman, Filip. See Luca, Florian
Nakatsukasa, Yuji. *Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric*, 2127

Narayan, Akil C., and Jan S. Hesthaven. *A generalization of the Wiener rational basis functions on infinite intervals: Part I–derivation and properties*, 1557

Neilan, Michael. See Brenner, Susanne C.

Nguyen, Ngoc Cuong. See Cockburn, Bernardo

Nochetto, Ricardo H. See Mekchay, Khamron

Oller-Marcén, Antonio M. See Grau, José María

Olver, Sheehan. *Computing the Hilbert transform and its inverse*, 1745

Ortner, Christoph. *A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D*, 1265

Östergård, Patric R. J. See Hulpke, Alexander

Oyarzúa, Ricardo. See Gatica, Gabriel N.

Pan, Hao, and Wei Zhang. *On the integers of the form $p^2 + b^2 + 2^n$ and $b_1^2 + b_2^2 + 2^n^2$, 1849

Peherstorfer, Franz. *Positive trigonometric quadrature formulas and quadrature on the unit circle*, 1685

Peraire, Jaume. See Cockburn, Bernardo

Pillichshammer, Friedrich. See Dick, Josef

Pizarro-Madariaga, Amalia. *Lower bounds for the Artin conductor*, 539

Poon, Yiu-Tung. See Li, Chi-Kwong

Pouisset, Henk. See Kreuzer, Martin

Qin, Zhen. See Chen, Qingshang

Rabus, Hella. See Carstensen, Carsten

Rampersad, Nadir. See Currie, James

Reiter, Clifford A. See Sawyer, Jorge F.

de Reyna, J. Arias. *High precision computation of Riemann’s zeta function by the Riemann-Siegel formula, I*, 995

Riesel, Hans. See Björn, Anders

Risebro, Nils Henrik. See Holden, Helge

Rodríguez, Rodolfo. See Durán, Ricardo G.

Saito, Mutsuo. See Harase, Shin

Sanhueza, Frank. See Durán, Ricardo G.

Saouter, Yannick, Xavier Gourdon, and Patrick Demichel. *An improved lower bound for the de Bruijn-Newman constant*, 2281

Sawyer, Jorge F., and Clifford A. Reiter. *Perfect parallelepipeds exist*, 1037

Sayas, Francisco-Javier. See Cockburn, Bernardo

Schätz, Alfred H. See Demlow, Alan

Schlage-Puchta, Jan-Christoph. See Bhowmik, Gautami

Schmidt, Gunther. See Lanzara, Flavia

Schräder, Daniela, and Holger Wendland. *A high-order, analytically divergence-free discretization method for Darcy’s problem*, 263

Schulte-Herbrüggen, Thomas. See Li, Chi-Kwong

Selgás, Virginia. See Meddahi, Salim

Shparlinski, Igor E. *On the average distribution of pseudorandom numbers generated by nonlinear permutations*, 1053

Sidi, Avram. *Asymptotic expansions of Legendre series coefficients for functions with interior and endpoint singularities*, 1663

Sikorski, K. See Boonyasiriwat, C.

Sloan, I. H. See Ganesh, M.

Sonnariva, A. See Bos, L.

Sonnenschein, Andrew J. See Hauenstein, Jonathan D.

Spijkers, M. N. See Hundsdorfer, W.

Spindler, M. See Beers, J.

Stevenson, Rob. \textit{Divergence-free wavelet bases on the hypercube: Free-slip boundary conditions, and applications for solving the instationary Stokes equations}, 1499

Stoll, Douglas A., and Patrick Demichel. \textit{The impact of }$\zeta(s)$\textit{ complex zeros on }$\pi(x)$\textit{ for }$x < 10^{10^{1/3}}$, 2381

Sugiura, Hiroshi, and Takemitsu Hasegawa. \textit{A polynomial interpolation process at quasi-Chebyshev nodes with the FFT}, 2169

Süli, Endre. \textit{See Condette, Nicolas}

Sung, Li-yeng. \textit{See Brenner, Susanne C.}

Sutherland, Andrew V. \textit{Structure computation and discrete logarithms in finite abelian }p\textit{-groups}, 477

Szabó, Sándor. \textit{Verifying a conjecture of L. Rédei for }$p = 13$, 1155

Sze, Tsz-Wo, with an Appendix by Lawrence C. Washington. \textit{On taking square roots without quadratic nonresidues over finite fields}, 1797

Tan, Roger C. E. \textit{See Duan, Huo-Yuan}

Tao, Terence. \textit{See Holden, Helge}

Temam, Roger. \textit{See Chen, Qingshan}

Tobiska, Lutz. \textit{See Eichelm. Hagen}

Trudgian, Timothy. \textit{Improvements to Turing's method}, 2259

Tsay, C. \textit{See Boonyasiriwat, C.}

Valentin, Frédéric. \textit{See Allendes, Alejandro}

Vergne, Michèle. \textit{See Baldoni, Velleda}

Vianello, M. \textit{See Bos, L.}

Voigt, John. \textit{See Greenberg, Matthew}

Wampler, Charles W. \textit{See Hauenstein, Jonathan D.}

Washington, Lawrence C. \textit{See Sze, Tsz-Wo}

Weinhardt, Thomas. \textit{See Adjerid, Slimane}

Wendland, Holger. \textit{See Schröder, Daniela}

de Wet, Deter. \textit{Subsequence convergence in subdivision}, 973

Wienersky, Franck. \textit{See Beckermann, Bernhard}

Wójciakowski, Henryk. \textit{See Dick, Josef}

Wu, Haijun. \textit{See Feng, Xiaobing}

Xie, Hehu. \textit{See Eichelm. Hagen}

Xu, Chuanju. \textit{See Lin, Yumin}

Xu, Jinchao. \textit{See Zheng, Bin}

Yengui, Ihsen. \textit{Stably free modules over }$R[X]$\textit{ of rank }$> \dim R$\textit{ are free}, 1093

Zeng, Zhonggang. \textit{See Dayton, Barry H.}

Zhang, Shangyou. \textit{Divergence-free finite elements on tetrahedral grids for }$k \geq 6$, 669

Zhang, Wei. \textit{See Pan, Hao}

Zhang, Zhenxiang. \textit{Counting Carmichael numbers with small seeds}, 437

Zhao, Wei. \textit{See Jia, Rong-Qing}

Zheng, Bin, Qiya Hu, and Jinchao Xu. \textit{A nonconforming finite element method for fourth order curl equations in }\mathbb{R}^3, 1871

Zhou, Jian-Rong. \textit{See Srivastava, H. M.}

Zhu, Yuntao. \textit{See Ariyawansa, K. A.}

Zou, Qingsong. \textit{See Kornhuber, Ralf}

Zuazua, Enrique. \textit{See Castro, Carlos}

Zudilin, Wadim. \textit{See Gallot, Yves}
INDEX OF REVIEWS BY AUTHOR OF WORK REVIEWED

<table>
<thead>
<tr>
<th>Author</th>
<th>Review Number</th>
<th>Classification</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galway, William F.</td>
<td>1</td>
<td>See Diamond, Harold G.</td>
<td>623</td>
</tr>
<tr>
<td>Halberstam, H.</td>
<td>1</td>
<td>See Diamond, Harold G.</td>
<td>623</td>
</tr>
<tr>
<td>Liu, Yijun</td>
<td>2</td>
<td>65N38, 35J08, 31A10</td>
<td>1867</td>
</tr>
</tbody>
</table>

INDEX OF REVIEWS BY SUBJECT OF WORK REVIEWED

<table>
<thead>
<tr>
<th>Author</th>
<th>Review Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-XX Number theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diamond, Harold G., H. Halberstam, & William F. Galway</td>
<td>1</td>
<td>A higher-dimensional sieve method with procedures for computing sieve functions</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>11N32</td>
<td>Primes represented by polynomials; other multiplicative structure of polynomial values</td>
<td></td>
</tr>
<tr>
<td>Diamond, Harold G., H. Halberstam, & William F. Galway</td>
<td>1</td>
<td>A higher-dimensional sieve method with procedures for computing sieve functions</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>11N35</td>
<td>Sieves</td>
<td></td>
</tr>
<tr>
<td>Diamond, Harold G., H. Halberstam, & William F. Galway</td>
<td>1</td>
<td>A higher-dimensional sieve method with procedures for computing sieve functions</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>11N36</td>
<td>Applications of sieve methods</td>
<td></td>
</tr>
<tr>
<td>65-XX Numerical analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu, Yijun</td>
<td>2</td>
<td>Fast multipole boundary element method</td>
<td>1867</td>
</tr>
<tr>
<td></td>
<td>65N38</td>
<td>Boundary element methods</td>
<td></td>
</tr>
<tr>
<td>35-XX Partial differential equations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu, Yijun</td>
<td>2</td>
<td>Fast multipole boundary element method</td>
<td>1867</td>
</tr>
<tr>
<td></td>
<td>35J08</td>
<td>Green's functions</td>
<td></td>
</tr>
<tr>
<td>31-XX Potential theory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liu, Yijun</td>
<td>2</td>
<td>Fast multipole boundary element method</td>
<td>1867</td>
</tr>
<tr>
<td></td>
<td>31A10</td>
<td>Integral representations, integral operators, integral equations methods</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alan Demlow, Johnny Guzmán, and Alfred H. Schatz, Local energy</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>estimates for the finite element method on sharply varying grids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alejandro Allendes, Gabriel R. Barrenechea, Erwin Hernández,</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Frédéric Valentin, A two-level enriched finite element method</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for a mixed problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salim Meddahi, Francisco-Javier Sayas, and Virginia Selgás,</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonsymmetric coupling of BEM and mixed FEM on polyhedral interfaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ralf Kornhuber and Qingsong Zou, Efficient and reliable hierarchical</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>error estimates for the discretization error of elliptic obstacle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arnaud Debussche, Weak approximation of stochastic partial</td>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>differential equations: the nonlinear case</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huo-Yuan Duan and Roger C. E. Tan, On the Poincaré-Friedrichs</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>inequality for piecewise H^1 functions in anisotropic discontinuous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galerkin finite element methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabriel Acosta, Thomas Apel, Ricardo G. Durán, and Ariel L. Lombardi,</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error estimates for Raviart-Thomas interpolation of any order on</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anisotropic tetrahedra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean-François Coulombel and Antoine Gloria, Semigroup stability of</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>finite difference schemes for multidimensional hyperbolic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initial-boundary value problems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicolas Condette, Christof Melcher, and Endre Süli, Spectral</td>
<td>205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>approximation of pattern-forming nonlinear evolution equations with</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>double-well potentials of quadratic growth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ben Adcock, Convergence acceleration of modified Fourier series in</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>one or more dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daniela Schräder and Holger Wendland, A high-order, analytically</td>
<td>263</td>
<td></td>
<td></td>
</tr>
<tr>
<td>divergence-free discretization method for Darcy’s problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arieh Iserles and David Levin, Asymptotic expansion and quadrature</td>
<td>279</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of composite highly oscillatory integrals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias Köppe,</td>
<td>297</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Michèlle Vergne, How to integrate a polynomial over a simplex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ioannis K. Argyros, A semilocal convergence analysis for directional</td>
<td>327</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newton methods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler,</td>
<td>345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regeneration homotopies for solving systems of polynomials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charles Knessl and Mark W. Coffey, An effective asymptotic formula</td>
<td>379</td>
<td></td>
<td></td>
</tr>
<tr>
<td>for the Stieltjes constants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Harvey, Faster algorithms for the square root and reciprocal of</td>
<td>387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>power series</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shin Harase, Makoto Matsumoto, and Mutsuo Saito, Fast lattice reduction for F_2-linear pseudorandom number generators 395
Dominic Lanphier, Values of symmetric cube L-functions and Fourier coefficients of Siegel Eisenstein series of degree-3 409
Florian Luca and Filip Najman, On the largest prime factor of $x^2 - 1$. 429
Zhenxiang Zhang, Counting Carmichael numbers with small seeds 437
Claus Diem, On the discrete logarithm problem in class groups of curves . 443
Andrew V. Sutherland, Structure computation and discrete logarithms in finite abelian p-groups .. 477
Andrew V. Sutherland, Computing Hilbert class polynomials with the Chinese remainder theorem .. 501
Amalia Pizarro-Madariaga, Lower bounds for the Artin conductor 539
Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over cubic number fields with prescribed torsion subgroups 579
V. A. Bovdi, E. Jespers, and A. B. Konovalov, Torsion units in integral group rings of Janko simple groups .. 593
Matthias Beck and Andrew van Herick, Enumeration of 4×4 magic squares ... 617
Reviews and Descriptions of Tables and Books 623
Harold G. Diamond, H. Halberstam, and William F. Galway 1

Vol. 80, No. 274 April 2011

Khamron Mekchay, Pedro Morin, and Ricardo H. Nochetto, AFEM for the Laplace-Beltrami operator on graphs: Design and conditional contraction property ... 625
Carsten Carstensen and Hella Rabus, An optimal adaptive mixed finite element method ... 649
Shangyou Zhang, Divergence-free finite elements on tetrahedral grids for $k \geq 6$.. 669
Hagen Eichel, Lutz Tobiska, and Helu Xie, Supercloseness and superconvergence of stabilized low-order finite element discretizations of the Stokes Problem .. 697
Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas, Analysis of HDG methods for Stokes flow ... 723
Sören Bartels and Rüdiger Müller, Quasi-optimal and robust a posteriori error estimates in $L^\infty(L^2)$ for the approximation of Allen-Cahn equations past singularities ... 761
V. Girault and F. Guillén-González, Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model 781
Helge Holden, Kenneth H. Karlsen, Nils Henrik Risebro, and Terence Tao, Operator splitting for the KdV equation 821
G. Berikelashvili, O. Jokhadze, S. Kharibegashvili, and B. Midodashvili, Finite difference solution of a nonlinear Klein-Gordon equation with an external source .. 847
W. Hundsdorfer and M. N. Spijker, Boundedness and strong stability of Runge-Kutta methods .. 863
Flavia Lanzara, Vladimir Maz’ya, and Gunther Schmidt, On the fast computation of high dimensional volume potentials 887
Josef Dick, Gerhard Larcher, Friedrich Pillichshammer, and Henryk Woźniakowski, Exponential convergence and tractability of multivariate integration for Korobov spaces .. 905
Bernhard Beckermann, Valeriy Kalyagin, Ana C. Matos, and Franck Wielonsky, How well does the Hermite–Padé approximation smooth the Gibbs phenomenon? .. 931
S. Amat, K. Dadourian, and J. Liandrat, On a nonlinear subdivision scheme avoiding Gibbs oscillations and converging towards C^s functions with $s > 1$.. 959
Deter de Wet, Subsequence convergence in subdivision 973
J. Arias de Reyna, High precision computation of Riemann’s zeta function by the Riemann-Siegel formula, I 995
Cristinel Mortici, Sharp bounds of the Landau constants 1011
Markus Hegland and Robert S. Anderssen, Dilational interpolatory inequalities .. 1019
Jorge F. Sawyer and Clifford A. Reiter, Perfect parallelepipeds exist . 1037
James McKee, Computing totally positive algebraic integers of small trace 1041
Igor E. Shparlinski, On the average distribution of pseudorandom numbers generated by nonlinear permutations 1053
James Currie and Narad Rampersad, A proof of Dejean’s conjecture . 1063
Matthew Greenberg and John Voight, Computing systems of Hecke eigenvalues associated to Hilbert modular forms 1071
Ihsen Yengui, Stably free modules over $\mathbb{R}[X]$ of rank $> \dim \mathbb{R}$ are free ... 1093
Omer Kucuksakalli, Class numbers of ray class fields of imaginary quadratic fields .. 1099
Andries E. Brouwer and Jan Draisma, Equivariant Gröbner bases and the Gaussian two-factor model .. 1123
Martin Kreuzer and Henk Poulisse, Subideal border bases 1135
Sándor Szabó, Verifying a conjecture of L. Rédei for $p = 13$ 1155
J. S. Friedman, J. Jorgenson, and J. Kramer, An effective bound for the Huber constant for cofinite Fuchsian groups 1163
Alexander Hulpke, Petteri Kaski, and Patric R. J. Östergård, The number of Latin squares of order 11 1197
Yves Gallot, Pieter Moree, and Wadim Zudilin, The Erdős–Moser equation $1^k + 2^k + \cdots + (m-1)^k = m^k$ revisited using continued fractions 1221
Ricardo G. Durán, Rodolfo Rodríguez, and Frank Sanhueza, Numerical analysis of a finite element method to compute the vibration modes of a Reissner-Mindlin laminated plate 1239
Christoph Ortner, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D .. 1265
Xiaozhe Hu and Xiaoliang Cheng, Acceleration of a two-grid method for eigenvalue problems .. 1287
Xiaobing Feng and Michael Nelln, Discontinuous finite element methods for a bi-wave equation modeling d-wave superconductors 1303
Slimane Adjerid and Thomas Weinhardt, Discontinuous Galerkin error estimation for linear symmetrizable hyperbolic systems 1335
Yumin Lin, Xianjuan Li, and Chuanju Xu, Finite difference/spectral approximations for the fractional cable equation 1369
M. Ganesh, Q. T. Le Gia, and I. H. Sloan, A pseudospectral quadrature method for Navier-Stokes equations on rotating spheres 1397
István Győngy and Nicolai Krylov, Accelerated finite difference schemes for second order degenerate elliptic and parabolic problems in the whole space ... 1431
Kenneth H. Karlsen and Trygve K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system 1459
Rob Stevenson, Divergence-free wavelet bases on the hypercube: Free-slip boundary conditions, and applications for solving the instationary Stokes equations .. 1499
Rong-Qing Jia and Wei Zhao, Riesz bases of wavelets and applications to numerical solutions of elliptic equations 1525
Akil C. Narayan and Jan S. Hesthaven, A generalization of the Wiener rational basis functions on infinite intervals: Part I–derivation and properties .. 1557
F. R. de Hoog, R. S. Anderssen, and M. A. Lukas, Differentiation of matrix functionals using triangular factorization 1585
Chi-Kwong Li, Yiu-Tung Poon, and Thomas Schulte-Herbrüggen, Least-squares approximation by elements from matrix orbits achieved by gradient flows on compact lie groups ... 1601
L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello, Geometric weakly admissible meshes, discrete least squares approximations and approximate Fekete points .. 1623
K. A. Ariyawansa and Yuntao Zhu, A class of polynomial volumetric barrier decomposition algorithms for stochastic semidefinite programming 1639
Avram Sidi, Asymptotic expansions of Legendre series coefficients for functions with interior and endpoint singularities 1663
Franz Peherstorfer, Positive trigonometric quadrature formulas and quadrature on the unit circle .. 1685
C. Boonyasiriwat, K. Sikorski, and C. Tsay, Circumscribed ellipsoid algorithm for fixed-point problems .. 1703
Toshio Fukushima, Precise and fast computation of the general complete elliptic integral of the second kind .. 1725
Barry H. Dayton, Tien-Yien Li, and Zhonggang Zeng, Multiple zeros of nonlinear systems ... 2143
Hiroshi Sugiura and Takemitsu Hasegawa, A polynomial interpolation process at quasi-Chebyshev nodes with the FFT 2169
Georg Muntingh and Michael Floater, Divided differences of implicit functions .. 2185
Charles Knessl and Mark W. Coffey, An asymptotic form for the Stieltjes constants $\gamma_k(a)$ and for a sum $S_\gamma(n)$ appearing under the Li criterion .. 2197
A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials ... 2219
Wenchang Chu, Dougall’s bilateral $2H_2$-series and Ramanujan-like π-formulae .. 2223
Gautami Bhowmik, Immanuel Halupczok, and Jan-Christoph Schlage-Puchta, Zero-sum free sets with small sum-set 2253
Timothy Trudgian, Improvements to Turing’s method 2259
Yannick Saouter, Xavier Gourdon, and Patrick Demichel, An improved lower bound for the de Bruijn-Newman constant 2281
Jean-Paul Cerri, Some generalized Euclidean and 2-stage Euclidean number fields that are not norm-Euclidean 2289
Borislav Mezhericher, Evaluating Whittaker functions and Maass forms for $SL(3, \mathbb{Z})$.. 2299
José María Grau and Antonio M. Oller-Marcén, An $O(\log^2(N))$ time primality test for generalized Cullen numbers 2315
Felix Fontein, The infrastructure of a global field of arbitrary unit rank .. 2325
Andrew Arnold and Michael Monagan, Calculating cyclotomic polynomials .. 2359
Douglas A. Stoll and Patrick Demichel, The impact of $\zeta(s)$ complex zeros on $\pi(x)$ for $x < 10^{10^{13}}$.. 2381
Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over quartic number fields with prescribed torsion subgroups 2395
Werner Bley and Henri Johnston, Computing generators of free modules over orders in group algebras II 2411
J. P. Buhler and D. Harvey, Irregular primes to 163 million 2435
Giedrius Alkauskas, Addenda and corrigenda to “The Minkowski question mark function: explicit series for the dyadic period function and moments” .. 2445
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \texttt{AMS-L\LaTeX}. To this end, the Society has prepared \texttt{AMS-L\LaTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-L\LaTeX} style file and the \texttt{|label} and \texttt{|ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \LaTeX, using \texttt{AMS-L\LaTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-L\LaTeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-L\LaTeX} is the highly preferred format of \LaTeX, but author packages are also available in \texttt{AMS-\LaTeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \LaTeX or plain \LaTeX are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \LaTeX users will find that \texttt{AMS-L\LaTeX} is the same as \texttt{LaTeX} with additional
commands to simplify the typesetting of mathematics, and users of plain \TeX should have the foundation for learning \texttt{AMS-L\LaTeX}.

Authors may retrieve an author package for \textit{Mathematics of Computation} from \url{www.ams.org/mcom/mcomauthorpac.html} or via FTP to \url{ftp.ams.org} (login as \texttt{anonymous}, enter your complete email address as password, and type \texttt{cd pub/author-info}). The \textit{AMS Author Handbook} and the \textit{Instruction Manual} are available in PDF format from the author package link. The author package can also be obtained free of charge by sending email to \url{tech-support@ams.org} or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify \texttt{AMS-L\LaTeX} or \texttt{AMS-\TeX} and the publication in which your paper will appear. Please be sure to include your complete email address.

After acceptance. The source files for the final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also submit a PDF of the final version of the paper to the Managing Editor, who will forward a copy to the Providence office. Accepted electronically prepared manuscripts can be submitted via the web at \url{www.ams.org/submit-book-journal/}, sent via email to \url{pub-submit@ams.org}, or sent on CD to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via email or CD, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/authors/journals.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10\%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an “Added after posting” section may be added to the paper right before the References when there is a critical error in the content of the paper. The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata article. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.
Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.
Timothy Trudgian, Improvements to Turing’s method 2259
Yannick Saouter, Xavier Gourdon, and Patrick Demichel, An improved lower bound for the de Bruijn-Newman constant 2281
Jean-Paul Cerri, Some generalized Euclidean and 2-stage Euclidean number fields that are not norm-Euclidean 2289
Borislav Mezhericher, Evaluating Whittaker functions and Maass forms for $SL(3, \mathbb{Z})$ 2299
José María Grau and Antonio M. Oller-Marcén, An $\tilde{O}(\log^2(N))$ time primality test for generalized Cullen numbers 2315
Felix Fontein, The infrastructure of a global field of arbitrary unit rank 2325
Andrew Arnold and Michael Monagan, Calculating cyclotomic polynomials 2359
Douglas A. Stoll and Patrick Demichel, The impact of $\zeta(s)$ complex zeros on $\pi(x)$ for $x < 10^{10^{13}}$ 2381
Daeyeol Jeon, Chang Heon Kim, and Yoonjin Lee, Families of elliptic curves over quartic number fields with prescribed torsion subgroups 2395
Werner Bley and Henri Johnston, Computing generators of free modules over orders in group algebras II 2411
J. P. Buhler and D. Harvey, Irregular primes to 163 million 2435
Giedrius Alkauskas, Addenda and corrigenda to “The Minkowski question mark function: explicit series for the dyadic period function and moments” 2445
Bin Zheng, Qiya Hu, and Jinchao Xu, A nonconforming finite element method for fourth order curl equations in \mathbb{R}^3 1871
Andrea Bonito and Jean-Luc Guermond, Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements .. 1887
Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem ... 1911
Gabriel Acosta and María G. Armentano, Finite element approximations in a non-Lipschitz domain: Part II .. 1949
Susanne C. Brenner, Thirupathi Gudi, Michael Neilan, and Liyeng Sung, C^0 penalty methods for the fully nonlinear Monge-Ampère equation ... 1979
Xiaobing Feng and Haijun Wu, hp-Discontinuous Galerkin methods for the Helmholtz equation with large wave number 1997
Carlos Castro and Enrique Zuazua, Flux identification for 1-d scalar conservation laws in the presence of shocks .. 2025
Qingshan Chen, Zhen Qin, and Roger Temam, Treatment of incompatible initial and boundary data for parabolic equations in higher dimension ... 2071
R. Donat, I. Higuera, and A. Martínez-Gavara, On stability issues for IMEX schemes applied to 1D scalar hyperbolic equations with stiff reaction terms ... 2097
Yuji Nakatsukasa, Gerschgorin’s theorem for generalized eigenvalue problems in the Euclidean metric .. 2127
Barry H. Dayton, Tien-Yien Li, and Zhonggang Zeng, Multiple zeros of nonlinear systems ... 2143
Hiroshi Sugiura and Takemitsu Hasegawa, A polynomial interpolation process at quasi-Chebyshev nodes with the FFT .. 2169
Georg Muntingh and Michael Floater, Divided differences of implicit functions ... 2185
Charles Knessl and Mark W. Coffey, An asymptotic form for the Stieltjes constants $\gamma_k(a)$ and for a sum $S_a(n)$ appearing under the Li criterion 2197
A. Bayad, Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials ... 2219
Wenchang Chu, Dougall’s bilateral $_2H_2$-series and Ramanujan-like π-formulae ... 2223
Gautami Bhowmik, Immanuel Halupczok, and Jan-Christoph Schlage-Puchta, Zero-sum free sets with small sum-set 2253
(Continued on inside back cover)