Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Diffusive realizations for solutions of some operator equations: The one-dimensional case


Authors: Michel Lenczner, Gérard Montseny and Youssef Yakoubi
Journal: Math. Comp. 81 (2012), 319-344
MSC (2010): Primary 35-xx, 47A62, 01-08, 47G10
DOI: https://doi.org/10.1090/S0025-5718-2011-02485-3
Published electronically: July 19, 2011
MathSciNet review: 2833497
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we deal with the derivation of state-realizations of linear operators that are solutions to certain operator linear differential equations in one-dimensional bounded domains. We develop two approaches in the framework of diffusive representations: one with complex diffusive symbols; the other with real diffusive symbols. Then, we illustrate the theories and develop numerical methods for a Lyapunov equation arising from optimal control theory of the heat equation. A practical purpose of this approach is real-time computation on a semi-decentralized architecture with low granularity.


References [Enhancements On Off] (What's this?)

  • 1. B. Bamieh, F. Paganini, and M.A. Dahleh, Distributed control of spatially invariant systems, IEEE Transactions on Automatic Control 47 (2002), no. 7, 1091-1107. MR 1911479 (2003d:93044)
  • 2. P. Bidan, T. Lebey, G. Montseny, C. Neascu, and J. Saint-Michel, Transient voltage distribution in inverter fed motor windings: Experimental study and modeling, IEEE Transactions on Power Electronics 16 (2001), no. 1, 92-100.
  • 3. P. Bidan, T. Lebey, and C. Neacsu, Development of a new off-line test procedure for low voltage rotating machines fed by adjustable speed drives (ASD), IEEE Transactions on Dielectrics and Electrical Insulation 10 (2003), no. 1, 168-175.
  • 4. C. Casenave and E. Montseny, Time-local dissipative formulation and stable numerical schemes for a class of integrodifferential wave equations, SIAM J. Appl. Math. 68 (2008), no. 6, 1763-1782. MR 2424962 (2009g:45017)
  • 5. E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp. 75 (2006), no. 254, 673-696. MR 2196986 (2006j:65404)
  • 6. R. D'Andrea and G. E. Dullerud, Distributed control design for spatially interconnected systems, IEEE Trans. Automat. Control 48 (2003), no. 9, 1478-1495. MR 2000106 (2004f:93042)
  • 7. I. P. Gavrilyuk and V. L. Makarov, Exponentially convergent parallel discretization methods for the first order evolution equations, Comput. Methods Appl. Math. 1 (2001), no. 4, 333-355. MR 1892950 (2003f:65174)
  • 8. -, Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces, SIAM J. Numer. Anal. 43 (2005), no. 5, 2144-2171. MR 2192335 (2006m:65100)
  • 9. G. Goavec-Merou, Y. Yakoubi, R. Couturier, M. Lenczner, and J.-M. Friedt, Fpga implementation of diffusive realizations for a distributed control operator, dMEMS 2010, Besançon, France - June 28-29th 2010.
  • 10. T. Hélie and D. Matignon, Diffusive representations for the analysis and simulation of flared acoustic pipes with visco-thermal losses, Math. Models Methods Appl. Sci. 16 (2006), no. 4, 503-536. MR 2218212 (2006k:76123)
  • 11. T. Hélie, D. Matignon, and R. Mignot, Criterion design for optimizing low-cost approximations of infinite-dimensional systems: towards efficient real-time simulation, Int. J. Tomogr. Stat. 7 (2007), no. F07, 13-18. MR 2393796
  • 12. C. Langbort and R. D'Andrea, Distributed control of spatially reversible interconnected systems with boundary conditions, SIAM J. Control Optim. 44 (2005), no. 1, 1-28. MR 2176664 (2006h:93006)
  • 13. L. Laudebat, P. Bidan, and G. Montseny, Modeling and optimal identification of pseudodifferential electrical dynamics by means of diffusive representation - Part 1: Modeling, IEEE Transactions on Circuits and Systems I-Regular Papers 51 (2004), no. 9, 1801-1813. MR 2090345 (2005e:94302)
  • 14. M. Lenczner and G. Montseny, Diffusive realization of operator solutions of certain operational partial differential equations, C. R. Math. Acad. Sci. Paris 341 (2005), no. 12, 737-740. MR 2188868 (2006f:93053)
  • 15. M. Lenczner and Y. Yakoubi, Semi-decentralized approximation of optimal control for partial differential equations in bounded domains, Comptes Rendus Mécanique 337 (2009), no. 4, 245-250.
  • 16. D. Levadoux and G. Montseny, Diffusive realization of the impedance operator on circular boundary for 2D wave equation, Mathematical and numerical aspects of wave propagation--WAVES 2003, Springer, Berlin, 2003, pp. 136-141. MR 2077989
  • 17. M. López-Fernández, C. Lubich, C. Palencia, and A. Schädle, Fast Runge-Kutta approximation of inhomogeneous parabolic equations, Numer. Math. 102 (2005), no. 2, 277-291. MR 2206466 (2007c:65071)
  • 18. M. López-Fernández, C. Lubich, and A. Schädle, Adaptive, fast, and oblivious convolution in evolution equations with memory, SIAM J. Sci. Comput. 30 (2008), no. 2, 1015-1037. MR 2385897 (2008m:65363)
  • 19. M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform of certain holomorphic mappings, Appl. Numer. Math. 51 (2004), no. 2-3, 289-303. MR 2091405 (2005e:65210)
  • 20. C. Lubich, Convolution quadrature revisited, BIT 44 (2004), no. 3, 503-514. MR 2106013 (2005f:65175)
  • 21. C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput. 24 (2002), no. 1, 161-182. MR 1924419 (2003h:44007)
  • 22. D. Matignon and C. Prieur, Asymptotic stability of linear conservative systems when coupled with diffusive systems, ESAIM Control Optim. Calc. Var. 11 (2005), no. 3, 487-507. MR 2148855 (2006f:93054)
  • 23. W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace transforms, IMA J. Numer. Anal. 24 (2004), no. 3, 439-463. MR 2068831 (2005d:47072)
  • 24. G Montseny, Simple approach to approximation and dynamical realization of pseudodifferential time operators such as fractional ones, IEEE Transactions on Circuits and Systems II-Express Briefs 51 (2004), no. 11, 613-618.
  • 25. G. Montseny, Représentation diffusive, Hermès-Sciences, 2005.
  • 26. A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadrature, SIAM J. Sci. Comput. 28 (2006), no. 2, 421-438. MR 2231714 (2007b:65142)
  • 27. L. Schwartz, Méthodes mathématiques pour les sciences physiques, Enseignement des Sciences, Hermann, Paris, 1961. MR 0143360 (26:919)
  • 28. D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature, IMA J. Numer. Anal. 23 (2003), no. 2, 269-299. MR 1975267 (2004b:65161)
  • 29. A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl. 23 (1979), no. 1, 97-120. MR 526286 (80c:65244)
  • 30. L. N. Trefethen, J. A. C. Weideman, and T. Schmelzer, Talbot quadratures and rational approximations, BIT 46 (2006), no. 3, 653-670. MR 2265580 (2007k:41033)
  • 31. C. Wagschal, Fonctions holomorphes, Equations différentielles, Hermann, Paris, 2003.
  • 32. J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comp. 76 (2007), no. 259, 1341-1356. MR 2299777 (2008c:65072)
  • 33. K. Yosida, Functional analysis, Classics in Mathematics, Springer-Verlag, 1995, Reprint of the sixth (1980) edition. MR 1336382 (96a:46001)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35-xx, 47A62, 01-08, 47G10

Retrieve articles in all journals with MSC (2010): 35-xx, 47A62, 01-08, 47G10


Additional Information

Michel Lenczner
Affiliation: Femto-St Institute, Time-Frequency 26, Rue de l’Epitaphe, 25030 Besançon, France –and– UTBM, 90010 Belfort Cedex, France
Email: michel.lenczner@utbm.fr

Gérard Montseny
Affiliation: LAAS-CNRS 7, avenue du Colonel Roche 31077 Toulouse Cedex 4, France
Email: montseny@laas.fr

Youssef Yakoubi
Affiliation: UPMC Univ Paris 06, Laboratoire Jacques-Louis Lions, F-75005, Paris Cedex, France
Email: yyakoubi@ann.jussieu.fr

DOI: https://doi.org/10.1090/S0025-5718-2011-02485-3
Keywords: Integral operators, diffusive representation, operational equation, Lyapunov equation, computational method, real-time computation.
Received by editor(s): September 24, 2009
Received by editor(s) in revised form: September 23, 2010
Published electronically: July 19, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society