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ON A NEW CLASS OF ADDITIVE (SPLITTING)

OPERATOR-DIFFERENCE SCHEMES

PETR N. VABISHCHEVICH

Abstract. Many applied time-dependent problems are characterized by an
additive representation of the problem operator. Additive schemes are con-
structed using such a splitting and are associated with the transition to a
new time level on the basis of the solution of more simple problems for the
individual operators in the additive decomposition. We consider a new class
of additive schemes for problems with additive representation of the opera-
tor at the time derivative. In this paper we construct and study the vector
operator-difference schemes, which are characterized by a transition from the
single initial evolution equation to a system of evolution equations.

Introduction

For the approximate solution of multidimensional unsteady problems of mathe-
matical physics there are widely used different classes of additive schemes (splitting
schemes) [7,10,23]. Beginning with the pioneering works [2,8] the simplest way to
construct additive schemes is in the splitting of the problem operator on the sum of
two operators with a simpler structure — alternating direction methods, factorized
schemes, predictor-corrector schemes, etc. [14].

In the more general case of multicomponent splitting, classes of uncondition-
ally stable operator-difference schemes are based on the concept of summarized
approximation. In this way, we can construct the classic locally one-dimensional
schemes (componentwise splitting schemes) [7,10], additively averaged locally one-
dimensional schemes [5, 14].

A new class of unconditionally stable schemes — vector additive schemes (mul-
ticomponent alternating direction method schemes) is actively developed (see, e.g.,
[1,20]). They belong to a class of full approximation schemes — each intermediate
problem approximates the original one. The simplest additive full approximation
schemes are based on the principle of regularization of operator-difference schemes.
Improving the quality of operator-difference schemes is achieved using additive or
multiplicative perturbations of operators of the scheme [9]. Regularized additive
schemes for evolutionary equations of the first and second order are constructed
for equations as well as systems of equations [15, 21]. First, the standard schemes
of splitting with respect to separate directions (locally one-dimensional schemes)
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and splitting with respect to physical processes are considered [7, 10]. Second, re-
gionally additive schemes based on domain decomposition for constructing parallel
algorithms are studied for transient problems of mathematical physics [6, 12, 22].

Our interest here is with mathematical models based on boundary value problems
for equations of Sobolev’s type. In his work [16] the following equation
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has been obtained for describing oscillations in a rotating liquid. Models with
the time derivative of first order have been much studied for the pseudo-parabolic
equation

M
du

dt
+ Lu = 0,

where M and L are elliptic operators [17, 18]. The most comprehensive review
of applied problems connected with equations of Sobolev type is presented in the
recently published book [19].

Starting from pioneer works [3, 4], many numerical algorithms have been de-
veloped for equations of Sobolev type. At present, different classes of additive
operator-difference schemes for evolutionary equations are constructed via additive
splitting of the operator L (connected with the solution u) onto several terms [7,14].
For a number of applications it is more interesting to consider problems in which the
additive representation takes place for the operator at the time derivative (operator
M ). We have such a situation, for instance, for the above-mentioned Sobolev equa-
tion where the operator at the time derivative is the sum of three one-dimensional
operators and the operator at u is one-dimensional, too. The main advantage of
the additive (splitting) schemes is associated with the solution of simpler problems
for the individual operator terms at the transition to a new time level.

In this work, for this new class of evolutionary problems, the vector additive
operator-difference schemes are constructed and studied. The work is organized as
follows. Section 1 provides a statement of the problem along with a simple a priori
estimate of the stability for the solutions with respect to initial data and right-
hand side. This estimate is just our reference point when considering the vector
problem and the operator-difference schemes. The vector differential problem is
considered in Section 2. The central part of the work (Section 3) deals with the
construction and investigation of the stability of vector additive schemes. Possible
generalizations of the results are discussed in Section 4.

1. Statement of the problem

Let H be a finite-dimensional Hilbert space, and let A,B,D be linear operators
in H. We consider grid functions y of finite-dimensional real Hilbert space H, for
the scalar product and norm in which we use the notations: (·, ·), ‖y‖ = (y, y)1/2.
For D = D∗ > 0 we introduce the space HD with scalar product (y, w)D = (Dy,w)
and norm ‖y‖D = (Dy, y)1/2.

In the Cauchy problem for evolutionary equations of first order we search the
function y(t) ∈ H, which satisfies the equation

(1.1) B
du

dt
+Au = f(t), t > 0,
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and the initial condition

(1.2) u(0) = u0

at a given f(t) ∈ H.
We assume that linear operators A and B, acting from H into H (A : H → H,

B : H → H), are positive, self-adjoint and stationary; that is,

A = A∗ > 0,
d

dt
A = A

d

dt
, B = B∗ > 0,

d

dt
B = B

d

dt
.

For problem (1.1), (1.2) we can obtain different a priori estimates, which express
the stability of the solution with respect to the initial data and right-hand side in
different spaces. We restrict ourselves to the simplest of them, trying to get the
same type of estimates for both the scalar and vector problems as well as for the
solution of both differential and difference problems.

Scalarly multiplying both sides of equation (1.1) in H by u, we get

1

2

d

dt
(Bu, u) + (Au, u) = (f, u).

For the right-hand side we use the estimate

(f, u) ≤ (Au, u) +
1

4

(
A−1f, f

)
.

This yields

d

dt
‖u‖2B ≤ 1

2
‖f‖2A−1 .

Taking into account Gronwall’s inequality we obtain the following a priori estimate
for the solution of problem (1.1), (1.2):

(1.3) ‖u(t)‖2B ≤ ‖u0‖2B +
1

2

t∫
0

‖f(s)‖2A−1ds,

which expresses the stability of the solution with respect to the initial data and
right-hand side.

Standard additive difference schemes are characterized by decomposition (split-
ting) of the operator A onto the sum of operators of a simpler structure. For
example, we assume that for operator A we have the following additive representa-
tion:

(1.4) A =

p∑
α=1

Aα, Aα = A∗
α ≥ 0, α = 1, 2, ..., p.

Additive difference schemes are based on the basis of (1.4), where the problem is
decomposed into p subproblems. The transition from time level tn to the next level
tn+1 = tn + τ , where τ > 0 is the time step and yn = y(tn), tn = nτ, n = 0, 1, ...,
is associated with solving problems for individual operators Aα, α = 1, 2, ..., p in
additive decomposition (1.4).

The subject we consider will be another case. In a number of problems the
computational complexity is not associated with operator A, but with operator B
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at the derivatives in time. In this case, to decrease the computational complexity
of problem (1.1), (1.2) we employ the additive representation

(1.5) B =

p∑
α=1

Bα, Bα = B∗
α > 0, α = 1, 2, ..., p.

instead of (1.4). The transition to a new time level is connected with the solution
of some auxiliary Cauchy problems for equations

Bα
duα

dt
+Auα = fα(t), t > 0, α = 1, 2, ..., p

for one or another selection of fα(t), α = 1, 2, ..., p, with specified appropriate initial
conditions.

2. Vector problem

By definition, put u = {u1, u2, ..., up}. Each individual component is defined as
the solution of similar problems

p∑
β=1

Bβ
duβ

dt
+Auα = f(t), t > 0,(2.1)

uα(0) = u0, α = 1, 2, ..., p.(2.2)

Here is the simplest coordinatewise estimate for the stability of the solution.
Subtracting one equation from another, we get

A(uα − uα−1) = 0, α = 2, 3, ..., p.

Taking into account the positivity of operator A, this gives

uα = uα−1, α = 2, 3, ..., p.

For separate component uα we obtain the same equation as for u:
p∑

β=1

Bβ
duα

dt
+Auα = f(t), t > 0, α = 1, 2, ..., p.

For the same reason, there are a priori estimates

(2.3) ‖uα(t)‖2B ≤ ‖u0‖2B +
1

2

t∫
0

‖f(s)‖2A−1ds, α = 1, 2, ..., p.

It follows that

uα(t) = u(t), t > 0, α = 1, 2, ..., p.

Therefore, as the solution of the original problem (1.1), (1.2) we can take any
component of the vector u(t).

For the vector evolutionary problem we can obtain a priori estimates for the
vector u, considering the problem in Hilbert space H = Hp with the scalar product

(u,v) =

p∑
α=1

(uα, vα).

This technique is used, for example, in [14] when considering additive schemes with
splitting (1.4).
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We rewrite equations (2.1) in the form

BαA
−1

p∑
β=1

Bβ
duβ

dt
+ Bαuα = f̃α(t), t > 0, α = 1, 2, ..., p,

where f̃α = BαA
−1f . This allows us to write the system of equations in vector

form:

(2.4) C
du

dt
+Du = f̃ .

Operator matrix C and D have the form

(2.5) C = {Cαβ}, Cαβ = BαA
−1Bβ,

D = {Dαβ}, Dαβ = Bαδαβ , α, β = 1, 2, ..., p,

where δαβ is the Kronecker delta. Equation (2.4) is supplemented by the initial
condition

(2.6) u(0) = u0.

The principal advantage of notation (2.4) results from the fact that

C = C∗ ≥ 0, D = D∗ > 0

in H.
Here is an a priori estimate for the solution of vector problem (2.4)–(2.6). This

estimate, on the one hand, is more complicated than (2.3) and, on the other hand,
we will use it as a guide in considering the operator-difference schemes.

Multiplying both sides of (2.4) scalarly in H by du/dt, we get

(2.7)

(
C
du

dt
,
du

dt

)
+

1

2

d

dt
(Du,u) =

(
f̃ ,

du

dt

)
.

Taking into account (2.5), we obtain(
C
du
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,
du

dt

)
=

⎛
⎝A−1

p∑
β=1

Bβuβ ,

p∑
β=1

Bβuβ

⎞
⎠ ,

and for the right-hand side of (2.7) we have

(2.8)

(
f̃ ,

du

dt

)
=

⎛
⎝A−1f,

p∑
β=1

Bβuβ

⎞
⎠ ≤

(
C
du

dt
,
du

dt

)
+

1

4

(
A−1f, f

)
.

Similar to (1.3), (2.3), from (2.7), (2.8) it follows that the estimate holds:

(2.9) ‖u‖2D ≤ ‖u0‖2D +
1

2

t∫
0

‖f(s)‖2A−1ds.

Taking into account (2.5), we have

‖u‖2D =

p∑
α=1

(Bαuα, uα) .

Thus, estimate (2.9) can be considered along with (2.3) as the vector analogue of
estimate (1.3). Taking into account (1.5), estimate (2.9) gives the stability of any
individual component of vector u(t).
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3. Additive vector schemes

Splitting schemes for the approximate solution of (1.1), (1.2), (1.5) will be con-
structed on the basis of usual schemes with weights for vector problem (2.1), (2.2).

The standard two-level scheme with weights for problem (1.1), (1.2) has the form

(3.1) B
yn+1 − yn

τ
+A(σyn+1 + (1− σ)yn) = ϕn, n = 0, 1, ...,

where, for example,
ϕn = f(σtn+1 + (1− σ)tn),

and σ is a weight parameter (usually 0 ≤ σ ≤ 1).
In the general theory of operator-difference schemes stability developed by A.A.

Samarskii [10–12], the exact (not improvable) stability criteria for two-level and
three-level operator-difference schemes in various norms were obtained. They can
be used directly in the study of schemes with weights (3.1). Here is a typical result.

Theorem 3.1. If σ ≥ 1/2, then operator-difference scheme (3.1) is absolutely
stable in HB and for the difference solution the level-wise estimate is valid:

(3.2) ‖yn+1‖2B ≤ ‖yn‖2B +
τ

2
‖ϕn‖2A−1 .

Proof. By definition, put

yσ(n) = σyn+1 + (1− σ)yn =
1

2
(yn+1 + yn) + τ

(
σ − 1

2

)
yn+1 − yn

τ
.

Multiplying both sides of (3.1) by yσ(n) scalarly in H, we get

1

2τ
(B(yn+1 − yn), yn+1 + yn)+

τ

(
σ − 1

2

)(
B
yn+1 − yn

τ
,
yn+1 − yn

τ

)
+ (Ayσ(n), yσ(n)) = (ϕn, yσ(n)).

For the right-hand side we use the estimate

(ϕn, yσ(n)) ≤ (Ayσ(n), yσ(n)) +
1

4
(A−1ϕn, ϕn).

If σ ≥ 1/2, we obtain the desired estimate (3.2) for the stability of the numerical
solution with respect to the initial data and the right-hand side, which is the grid
analog of estimate (1.3) for the solution of problem (1.1), (1.2). This concludes the
proof. �

To solve vector problem (2.1), (2.2) we apply the following difference scheme:

(3.3) Bα

(
θ
yn+1
α − ynα

τ
+ (1− θ)

ynα − yn−1
α

τ

)
+

p∑
α�=β=1

Bβ

ynβ − yn−1
β

τ
+A(σyn+1

α + (1− 2σ)ynα + σyn−1
α ) = ϕn,

n = 0, 1, ..., α = 1, 2, ..., p.

Unlike (3.1) scheme (3.3) is a three-level one and has two weight factors θ and σ.
Numerical implementation of scheme (3.3) is associated with solving sequential

grid problems
(θBn

α + στA) yn+1
α = χn

α, α = 1, 2, ..., p,
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with transition from time level tn to new time level tn+1. For vector additive
scheme (3.3) it is possible to implement a parallel organization of computations —
an independent calculation of the individual components.

Using notation (2.5), we write operator-difference scheme (3.3) in the vector form

(3.4) θG
yn+1 − 2yn + yn−1

τ
+

C
yn − yn−1

τ
+D(σyn+1 + (1− 2σ)yn + σyn−1) = gn,

where

G = {Gαβ}, Gαβ = BαA
−1Bαδαβ ,

gn = {gnα}, gnα = BαA
−1ϕn, α, β = 1, 2, ..., p.

Thus, in (3.4) operator G = G∗ > 0.
Taking into account that

yn − yn−1

τ
=

yn+1 − yn−1

2τ
− yn+1 − 2yn+1 + yn−1

2τ
,

σyn+1 + (1− 2σ)yn + σyn−1 =(
σ − 1

4

)
(yn+1 − 2yn+1 + yn−1) +

1

4
(yn+1 + 2yn+1 + yn−1),

rewrite (3.4) in the form

(3.5) C
yn+1 − yn−1

2τ
+R

yn+1 − 2yn+1 + yn−1

τ
+

1

4
D(yn+1 + 2yn+1 + yn−1) = gn,

where

R = θG− 1

2
C+ τ

(
σ − 1

4

)
D.

Let

vn =
1

2
(yn + yn−1), wn = yn − yn−1

and rewrite (3.5) in the form

(3.6) C
wn+1 +wn

2τ
+R

wn+1 −wn

τ
+

1

2
D(vn+1 + yn) = gn.

Multiplying both sides of (3.6) scalarly by

2(vn+1 − vn) = wn+1 +wn,

we get the equality

(3.7)
1

2τ
(C(wn+1 +wn),wn+1 +wn) +

1

τ
(R(wn+1 −wn),wn+1 +wn)+

(D(vn+1 + vn),vn+1 − vn) = (gn,wn+1 +wn).

Similar to (2.8), we have

(gn,wn+1 +wn) ≤ 1

2τ
(C(wn+1 +wn),wn+1 +wn) +

τ

2
(A−1ϕn, ϕn).

With this in mind, from (3.7) it follows that

(3.8) En+1 ≤ En +
τ

2
(A−1ϕn, ϕn),
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where

En = (Dvn,vn) +
1

τ
(Rwn,wn).

We formulate the conditions under which the value of En determines the square
of the norm of the difference solution. By virtue of the positivity of operator D it
is sufficient to require non-negativity of operator R.

For the energy of operatorsC andG, the following coordinatewise representation
holds:

(Cu,u) =

(
A−1

p∑
α=1

Bαuα,

p∑
α=1

Bαuα

)
,

(Gu,u) =

p∑
α=1

(
A−1Bαuα, Bαuα

)
.

Considering (
A−1

p∑
α=1

Bαuα,

p∑
α=1

Bαuα

)
=

(
p∑

α=1

(
A−1/2Bαuα

)2

, 1

)

≤ p

p∑
α=1

(
(A−1/2Bαuα)

2, 1
)
= p

p∑
α=1

(
A−1Bαuα, Bαuα

)
,

we get

C ≤ pG.

Therefore, at σ ≥ 1/4 and θ ≥ p/2 it holds that R ≥ 0. We have thus proved the
following assertion.

Theorem 3.2. If σ ≥ 1/4 and θ ≥ p/2, then operator R ≥ 0 in H, an additive
vector scheme (3.3) is absolutely stable, and the difference solution holds a priori
for estimate (3.8) with

En =

∥∥∥∥yn + yn−1

2

∥∥∥∥
D

+
1

τ

(
R(yn − yn−1),yn − yn−1

)
.

Proved a priori estimate (3.8) guarantees the stability of the difference solution
in the half-integer time levels (for vn) and is the difference analogue for estimate
(2.9).

4. Generalizations

We note some of the key research areas that focus on the synthesis and develop-
ment of the obtained results.

On the basis of a priori estimate (3.8), we obtain the convergence of the solution
of the difference problem (3.3) to the solution of the differential problem (1.1), (1.2)
with the first order of τ . In the standard way [10] we consider the problem for the
truncation error using a particular scheme for finding the solution at the first time
level.
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Instead of (3.3) we can use another additive scheme. In the class of vector
additive schemes, in particular, special attention should be given to the scheme

α∑
β=1

Bβ

yn+1
β − ynβ

τ
+

p∑
β=α+1

Bβ

ynβ − yn−1
β

τ
+

A(σyn+1
α + (1− 2σ)ynα + σyn−1

α ) = ϕn,

n = 0, 1, ..., α = 1, 2, ..., p.

In this case, the time derivative of the several components of the vector solution
relates to the upper time-level. Such vector additive schemes are widely used [1,13]
with usual decomposition (1.4).

Some resources are available when considering more general problems than (1.1),
(1.2), (1.5). In our study we restricted ourselves to the simplest problems, where
operators A,B and the components of splitting Bα, α = 1, 2, ..., p are constant self-
adjoint and positive in finite Hilbert space H. These restrictions can be removed
in some cases, by analogy with the theory of additive schemes for problems (1.1),
(1.2) with the usual splitting of (1.5), considering, for example, problems with not
self-adjoint operators, and problems with operator factors [12, 14].

In terms of generalizing the results, the greatest interest is to construct the ad-
ditive operator-difference schemes for solving the Cauchy problem for evolutionary
equation (1.1) in the splitting of both operator A and operator B — for the problem
(1.1), (1.2), (1.4), (1.5). In this case the transition to the new time level is based
on solving a sequence of problems for equations

Bα
duα

dt
+Aαuα = fα(t), t > 0, α = 1, 2, ..., p,

with appropriate initial conditions.
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