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A FAMILY OF ANADROMIC NUMERICAL METHODS

FOR MATRIX RICCATI DIFFERENTIAL EQUATIONS

REN-CANG LI AND WILLIAM KAHAN

Abstract. Matrix Riccati Differential Equations (MRDEs)

X′ = A21 −XA11 +A22X −XA12X, X(0) = X0,

where Aij ≡ Aij(t), appear frequently throughout applied mathematics, sci-
ence, and engineering. Naturally, the existing conventional Runge-Kutta meth-
ods and linear multi-step methods can be adapted to solve MRDEs numeri-
cally. Indeed, they have been adapted. There are a few unconventional nu-
merical methods, too, but they are suited more for time-invariant MRDEs
than time-varying ones. For stiff MRDEs, existing implicit methods which are
preferred to explicit ones require solving nonlinear systems of equations (of
possibly much higher dimensions than the original problem itself of, for exam-
ple, implicit Runge-Kutta methods), and thus they can pose implementation
difficulties and also be expensive.

In the past, the property of an MRDE which has been most preserved is
the symmetry property for a symmetric MRDE; many other crucial properties
have been discarded. Besides the symmetry property, our proposed methods
also preserve two other important properties — Bilinear Rational Dependence
on the initial value, and a Generalized Inverse Relation between an MRDE

and its complementary MRDE. By preserving the generalized inverse relation,
our methods are accurately able to integrate an MRDE whose solution has
singularities. By preserving the property of bilinear dependence on the initial
value, our methods also conserve the rank of change to the initial value and a
solution’s monotonicity property.

Our methods are anadromic,1meaning if an MRDE is integrated by one of
our methods from t=τ to τ+θ and then integrated backward from t=τ+θ
to τ using the same method, the value at t=τ is recovered in the absence of
rounding errors. This implies that our methods are necessarily of even order
of convergence. For time-invariant MRDEs, methods of any even order of con-
vergence are established, while for time-varying MRDEs, methods of order as
high as 10 are established; but only methods of order up to 6 are stated in
detail.

Our methods are semi-implicit, in the sense that there are no nonlinear
systems of matrix equations to solve, only linear ones, unlike any pre-existing
implicit method. Given the availability of high quality codes for linear matrix
equations, our methods can easily be implemented and embedded into any
application software package that needs a robust MRDE solver.

Numerical examples are presented to support our claims.

1We coined “anadromic” from the Greek roots “ανα-” (back up) and “δρoμoσ” (act of running)
of “anadromous” (which describes fish that must return from the ocean to spawn in the same
streams whence they hatched) after we had tried to describe our numerical methods with words
such as “reflexive” [27, 28], “symmetric” (which is still used today in the literature, e.g., [22]),
and “reversible” which turned out to be overused.
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1. Introduction

Matrix Riccati Differential Equations (MRDEs) arise frequently throughout ap-
plied mathematics, science and engineering. In particular they play major roles
in optimal control, filtering and estimation [30] and in solving linear two point
boundary value problems of ordinary differential equations (ODEs) [3, 4, 18, 19].
A number of algorithms have been proposed in the past for solving MRDEs nu-
merically. These include carefully redesigned conventional Runge-Kutta methods
and Linear Multi-step Methods for ODEs by Choi and Laub [10] and by Dieci [15],
and unconventional methods for MRDEs arising from optimal control theory, e.g.,
[12, 29, 32, 31, 33, 34, 37, 40, 42, 44]. It is known that these unconventional
methods are either not suited or inefficient for time-varying MRDEs. While the
redesigned conventional methods benefit greatly from past development of sophisti-
cated general-purposed computer programs for ODEs, they easily evolve into com-
plicated programs thousands of lines long with complicated interfaces. Implicit
conventional methods which are preferred to explicit ones for stiff systems require
solving nonlinear systems of equations (of possibly much higher dimensions than the
original problem itself for Runge-Kutta methods) which can pose implementation
difficulties and also be expensive.

None of these preexisting methods can integrate over solution singularities (poles)
that occur occasionally in applications, e.g., in one-dimensional quantum Hamilton-
Jacobi equations [11]. In this paper, we will establish a family of unconventional
numerical methods that can produce meaningful numerical results even if there are
poles in the solution. This capability is a byproduct of our numerical formulas that
preserve crucial structural properties previously disregarded. One of our second
order methods is not entirely new. It was used in 1987 by Babuška and Majer [4,
Section 3.2] for both time-invariant and time-varying MRDEs, and had also been
used independently by the second author here in one of his unpublished notes in the
1980s. While this method is only of order 2, it conserves many important properties
of MRDEs that are crucial to our investigation here. Such conservations were not
mentioned in [4], however.

Generally, an MRDE takes the form

(MRDE) X ′ = A21 −XA11 + A22X −XA12X, X(0) = X0,

where X is an n-by-m (not necessarily square) matrix-valued function of time t,
and all Aij are smooth matrix-valued functions of time t, too, with dimensions
determined by the following conformal partitioning:

(1.1) A ≡ A(t) =

( m n

m A11 A12

n A21 A22

)
.

The general form of our methods for integrating from t = τ to t = τ + θ is

(1.2)
YYY −XXX

θ/2
=

k−1∑
�=0

( 1
2θ)

2�c�f�(XXX,YYY ),
ZZZ − YYY

θ/2
=

k−1∑
�=0

( 1
2θ)

2�c�f�(ZZZ,YYY ),

where XXX ≈ X(τ ) and ZZZ ≈ X(τ + θ), and f�( · , · ) are matrix-valued functions to
be determined so that this will give a method of order 2k and at the same time
keep the equations in (1.2) linear in YYY and ZZZ, separately, and c� are the coefficients
in the power series of tanh t. For time-invariant MRDEs, we have found all such
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methods of all even orders. For time-varying MRDEs, we have found methods of
order as high as 10; but only methods of order up to 6 are described in detail owing
to their exponentially growing complexities as the order increases. Mathematica
plays a major role in our finding those methods for the time-varying MRDEs.

The method of (1.2) can be cast into the framework of modified integrators
in the sense of [8], and is also closely related to the implicit midpoint rule on an
associated linear differential equation. The latter fact, generously shared with us by
Hairer [23], makes it possible for us to simplify significantly our earlier construction
of high order methods in the form of (1.2) in [35]. This is done now by establishing
modified implicit midpoint rules for a linear differential equation [36].

Geometrically, an MRDE can be viewed as a flow on the Grassmann manifold
[46]. Schiff and Shnider [41] appear to be the first to take advantage of this point
of view and proposed so-called Möbius Schemes to better simulate the flow. The
basic idea is to numerically preserve the (bi)linear rational dependence property,
one of the three properties we shall discuss in Section 2, and it is done through ap-
proximating the fundamental solution of the associated linear differential equation.
It was argued that this preservation would enable the schemes “to deal with numer-
ical instability and pass accurately through the singularities”. Our methods (1.2)
preserve the (bi)linear rational dependence property, besides two other properties—
symmetry and a generalized inverse relation. In this sense, our methods fit into
the form of their Möbius Schemes. But we argue that it is the preservation of the
generalized inverse relation property that enables us to give a rigorous justification
for why our methods can pass through singularities.

Solutions X(t) to an MRDE can also be regarded as sample-values of members
of the two-sided bilinear rational matrix function group selected by t and sampled
at an indeterminate X(0). Our methods (1.2), as well as Möbius Schemes in [46],
approximate X(t) by a sequence of sample-values each drawn from the same group
of two-sided bilinear rational matrix functions, regardless of X(0). More detail is
given in Section 5.

In analyzing our methods, the MRDE complementary to (MRDE), namely

(cMRDE) U ′ = A12 − UA22 + A11U − UA21U, U(0) = U0

plays a major role. We say (cMRDE) is the complement of (MRDE). The com-
plement of the complement of an MRDE is the MRDE itself. In particular, the
complement of (cMRDE) becomes (MRDE). To single out these two equations
(MRDE) and (cMRDE) from the rest, we choose to label them differently to make
them recognizable instantaneously.

The rest of this paper is organized as follows. Section 2 reviews three important
properties of MRDEs that we should prefer our numerical methods to preserve,
other things being equal. In Section 3, we first introduce two simple second order
anadromic methods, based on the fact there are two pre-existing techniques to
compute higher orders approximations—classical extrapolation and composition.
Our focus in this article, however, is on a third technique that produces higher
order anadromic methods in the general form of (1.2). In Section 4, we prove
that our proposed methods (1.2) indeed preserve the three important properties,
and as a byproduct a solution’s monotonicity property. Because of the preserved
properties, we argue in Section 6 that our methods will have the capability to
march over solution poles and still render numerical solutions that are as accurate
as dictated by the step-size, the order of the method used, and rounding errors
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in solving encountered linear matrix equations along the way. A linear stability
theory is outlined in Section 7 for our methods. The claim that our methods can
march over the poles and our linear stability theory are validated by three numerical
examples in Section 8. Section 9 presents our conclusions.

Notation. X and X(t) is the solution of (MRDE), and XXX, YYY , and ZZZ are numerical
approximates at t = τ , τ + θ/2, and τ + θ, respectively. Similarly, symbols U , U(t),
UUU , VVV , andWWW mean the same for the corresponding (cMRDE). Ik is the k×k identity
matrix, or simply I when its dimension is clear from the context. Superscript ( · )T
denotes transpose, while ( · )∗ denotes conjugate transpose.

2. Important properties of MRDEs

An MRDE is said to be symmetric if

(2.1) A21 = AT
21, A11 = −AT

22, A12 = AT
12, and X(0) = X(0)T.

This definition of symmetry is valid regardless of whether A and X(0) are complex,
and in fact, in our later development, it is not necessary for A and X(0) to be real
when we refer to a symmetric MRDE. We say (MRDE) is Hermitian if

(2.2) A21 = A∗
21, A11 = −A∗

22, A12 = A∗
12, and X(0) = X(0)∗.

An MRDE is said to be time-invariant if A in (1.1) does not depend on t, i.e., a
constant matrix; otherwise it is time-varying.

In what follows we shall explain three properties that are important to us in this
study: Bilinear Rational Dependence on the initial value, Generalized Inverse Prop-
erty , and Symmetry. Among them, the Symmetry property (Hermitian MRDEs
included) is easiest to preserve, and almost all known numerical schemes do achieve
that, e.g., the straightforward applications of the Runge-Kutta and linear multi-
step methods. But preserving the other two properties cheaply is a nontrivial task
achieved by few previous numerical schemes.

All three properties, however, are preserved by our methods in the next section.
Because of this, we argue later that our methods preserve a solution’s monotonicity
for symmetric MRDEs and are capable of marching over solution’s poles.

2.1. Bilinear rational property. In principle, (MRDE) could be reduced to a
(time-varying) linear homogeneous equation by the Bernoulli substitution of the
form X = TS−1 [39]:

(2.3)
dP

dt
= AP, P (0) =

(
S0

T0

)
, wherein P =

(m

m S
n T

)
.

The solution to (MRDE) with X(0) = T0S
−1
0 relates to the solution to (2.3) by

X(t) = T (t)S(t)−1 so long as S(t) remains invertible, and it would if X(t) stayed
finite because S(t) satisfies a linear homogeneous differential equation S′ = (A11 +
A12X)S. But this reduction of the given MRDE to a linear homogeneous differential
equation is vulnerable to numerical instability when, as happens sometimes, all
the columns of P approach a subspace of dimension lower than the number of
columns, and then S becomes too nearly noninvertible to allow X to be recovered
accurately from TS−1. This is why X(t), if it must be computed numerically, is
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usually computable better from the given MRDE than from either its foregoing
linear reduction or a second linear reduction, namely

(2.4) R′ = −RA, R(0) =
(
T0 −S0

)
, wherein R =

(
T −S

)
for which X(t) = S(t)−1T (t), provided X(0) = S−1

0 T0. Both reductions can fizzle
numerically.

Still the two linear reductions shed light on how the desired solution X(t) depends
on its initial value X(0). Let Φ ≡ Φ(t) be the Fundamental Solution (or Matrizant)
of (2.3):

(2.5)
dΦ

dt
= AΦ, Φ(0) = Im+n (identity matrix),

so P (t) = ΦP (0). Consequently, after partitioning

(2.6) Φ =

( m n

m Φ11 Φ12

n Φ21 Φ22

)
,

we find that

(2.7) X(t) = [Φ21 + Φ22X(0)][Φ11 + Φ12X(0)]−1.

This is well defined when [Φ11 + Φ12X(0)]−1 exists, which is guaranteed for small
enough t. As t increases, if Φ11 + Φ12X(0) becomes singular at some point t0, then
t0 becomes either a singularity or a removable singularity of X(t). In any case, for
any fixed t the matrix is a Bilinear Rational Function of X(0).

X(t) is actually a Two-Sided Bilinear Rational Function of X(0), bilinear ratio-
nal in two ways simultaneously due to the second linear reduction (2.4). Actually,
the two kinds of bilinear rational dependence of X(t) on X(0) coexist partly be-
cause of the MRDE, but more because of an obscure matrix identity independent
of that differential equation.

Theorem 2.1 (Most bilinear rational functions are two-sided). Let Φ and Φ̃ be
two (m+ n)-by-(m+ n) matrices partitioned in the same way as in (2.6). Suppose

that there is at least one n×m matrix G such that both Φ11+Φ12G and GΦ̃12−Φ̃22

are invertible2. Then

(2.8) [Φ21 + Φ22G][Φ11 + Φ12G]−1 ≡ [GΦ̃12 − Φ̃22]
−1[−GΦ̃11 + Φ̃21]

for every n×m matrix G such that both matrix inverses exist if and only if

Φ̃ Φ ≡
(

Φ̃11 Φ̃12

Φ̃21 Φ̃22

)(
Φ11 Φ12

Φ21 Φ22

)
= μI

for some scalar μ.

Proof. The first identity is equivalent to

[GΦ̃12 − Φ̃22][Φ21 + Φ22G] = [−GΦ̃11 + Φ̃21][Φ11 + Φ12G],

which expands into

(2.9) (Φ̃21Φ11 + Φ̃22Φ21) −G(Φ̃11Φ11 + Φ̃12Φ21)

+ (Φ̃21Φ12 + Φ̃22Φ22)G−G(Φ̃11Φ12 + Φ̃12Φ22)G = 0.

2This implies that both matrices are invertible for some nonempty open set of matrices G.
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This holds for every G (such that [Φ11 + Φ12G]−1 and [GΦ̃12 − Φ̃22]
−1 exist) if

Φ̃Φ = μI is satisfied. On the other hand, if (2.8) holds for every matrix G in a
nonempty open set, so does (2.9) for every matrix G in the nonempty open set
and, consequently, for every n × m matrix G because (2.9) is a constraint upon
quadratic polynomials in the entries of G; if satisfied by all elements in an open set,
the identity must be satisfied by every aptly dimensioned G. Now run G through

every such matrix each with at most one nonzero element to conclude Φ̃Φ = μI for
some scalar μ. �

What use is the two-sided property of this bilinear rational function X(t) of
X(0)? One application is a far simpler proof than is found in Reid [39, p.12] of the
following theorem. Write the bilinear rational function X(t) of X(0) as defined in
(2.7) as X(t) = F (X(0)).

Theorem 2.2 ([39]). Rank(F (X1) − F (X2)) = rank(X1 − X2) if F (X1) and
F (X2) are both finite.

Proof. Take F (X1) = [Φ21 + Φ22X1][Φ11 + Φ12X1]
−1 but change F (X2) = [Φ21 +

Φ22X2][Φ11+Φ12X2]
−1 to F (X2) = [X2Φ̃12−Φ̃22]

−1[−X2Φ̃11+Φ̃21] as Theorem 2.1
provides with μ = 1 since the fundamental solution Φ of (2.3) is nonsingular.
Consequently,

F (X1) − F (X2) = [X2Φ̃12 − Φ̃22]
−1(X1 −X2)[Φ11 + Φ12X1]

−1,

and the conclusion follows. �

This theorem implies that, when the solution X(t) = F (X(0)) of a matrix Ric-
cati differential equation changes because its initial value X(0) has been changed,
the rank of the change is conserved.

Observe that bilinear rational functions are closed under composition. In fact,
two-sided bilinear rational matrix functions like (2.7) form a group. Solutions X(t)
to (MRDE) can be regarded as sample-values of members of the group selected by t
and sampled at an indeterminate X(0). More about this is in Section 5. We should
prefer

Numerical methods that preserve this bilinear rational
property in its computed solution XXX, other things being equal.

2.2. Generalized inverse property. The MRDE ensures that all the inverses in
Subsection 2.1 exist while t is small enough, and this ensures X(t) is a two-sided
bilinear rational function of X(0) unless t gets so big that X(t) has a pole; if such
a thing exists it is a finite t �= 0 at which X(t) becomes infinite.

What happens when a square solution X(t) (i.e., m = n) passes through a pole?
Typically its inverse U(t) passes through a singular matrix; this U(t) satisfies (cM-
RDE). When m �= n, this complementary MRDE is still well defined. Theorem 2.3
below shows that a so-called Generalized Inverse Relation is enforced between two
complementary MRDEs.

Theorem 2.3. If X0U0 = I (or U0X0 = I), and if the solutions X(t) to (MRDE)
and U(t) to (cMRDE) have only isolated singularities and share none in common,
then X(t)U(t) ≡ I (or U(t)X(t) ≡ I, respectively).
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Proof. If U0X0 = I, then (UX) = I solves the following initial value problem for
(UX):

d

dt
(UX) =(A12 − UA22 + A11U − UA21U)X

+ U(A21 −XA11 + A22X −XA12X)

=A12X − (UX)A12X + A11(UX) − (UX)A11 − UA21(UX) + UA21

=[I − (UX)]A12X + A11[(UX) − I]

− [(UX) − I]A11 − UA21[(UX) − I],

(UX)|t=0 = I.

Therefore, (UX) = I at least initially. Since all singularities in X(t) and U(t) are
assumed to be isolated, so are those of U(t)X(t). Thus all the singularities in the
right-hand side of this ODE are removable.

The other case when X0U0 = I is similar. �

We should prefer

Numerical methods that retain this generalized inverse property
in their computed solutions XXX and UUU , other things being equal.

Equation XU = In necessarily implies n ≤ m and that X’s rows are linearly
independent. We call such U a right generalized inverse of X. Similarly, UX = Im
necessarily implies n ≥ m and that X’s columns are linearly independent. We call
such U a left generalized inverse of X. In either case, we call U a generalized inverse
of X.

2.3. Symmetry property. Symmetric MRDEs, i.e., (2.1) holds, appear most
commonly in optimal control and filtering problems [10, 29]. For a symmetric
MRDE, A’s eigenvalues come in pairs with opposite signs because

A is similar to AT = −JAJ−1 which is similar to −A,

where

(2.10) J =

(
0 −In
In 0

)
, JT = −J = J−1.

Such a matrix A is said to be Hamiltonian. Then A and −A have the same eigen-
values. If 0 is among them its multiplicity is even, even if it is defective for lack of
an equal number of eigenvectors. A’s eigenvalues are important in the discussion
of the MRDE’s attractive stationary points.

Next consider the Fundamental Solution of (2.3) partitioned thus:

(2.11) Φ =

( n n

n Φ11 Φ12

n Φ21 Φ22

)
.

Since d
dt (J

−1ΦTJ) = −(J−1ΦTJ)A,

Φ−1 = J−1ΦTJ =

(
ΦT

22 −ΦT
12

−ΦT
21 ΦT

11

)
.
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Therefore,

Φ11Φ
T
22 − Φ12Φ

T
21 = ΦT

22Φ11 − ΦT
12Φ21 = I,

Φ11Φ
T
12 − Φ12Φ

T
11 = Φ21Φ

T
22 − Φ22Φ

T
21 = 0,

ΦT
22Φ12 − ΦT

12Φ22 = ΦT
11Φ21 − ΦT

21Φ11 = 0.

Then for every symmetric initial value X(0) = X0, we find that

X(t) = [Φ21 + Φ22X0][Φ11 + Φ12X0]
−1(2.12)

=
[
ΦT

11 + X0Φ
T
12

]−1
[ΦT

21 + X0Φ
T
22]

= X(t)T.

Theorem 2.4 (Most symmetry-preserving bilinear rational functions are two-sided).
Let Φ be a 2n-by-2n matrix partitioned as in (2.11). Suppose that there is at least
one n× n matrix G such that Φ11 + Φ12G is invertible. Then

(2.13) [Φ21 + Φ22G][Φ11 + Φ12G]−1 ≡
[
ΦT

11 + GΦT
12

]−1
[ΦT

21 +GΦT
22] is symmetric

for every n × n symmetric matrix G = GT for which the matrix inverse exists if
and only if

(2.14)

(
ΦT

22 −ΦT
12

−ΦT
21 ΦT

11

)(
Φ11 Φ12

Φ21 Φ22

)
= μI

for some scalar μ.
Moreover, μ �= 0 if and only if both sides of (2.13) actually vary with G.

Proof. The first claim is proved in the same way as for Theorem 2.1, except for
running G through all symmetric matrices of the apt dimension with at most two
nonzero elements.

The second claim follows from the observation that (2.14) amounts to (J−1ΦTJ)·
Φ = μI. If μ = 0, then the rank of Φ cannot exceed the nullity of J−1ΦTJ which is
the same as that of Φ, and therefore cannot exceed n. Since the rank of (Φ11,Φ12)
is n because [Φ11 + Φ12G]−1 exists for some G, the rank of Φ is n, too. Then
(Φ21,Φ22) = H(Φ11,Φ12) for some square H, and thus

[Φ21 + Φ22G][Φ11 + Φ12G]−1 = H

regardless of G. On the other hand, if both sides of (2.13) do not vary with G,
then [Φ21 +Φ22G][Φ11 +Φ12G]−1 ≡ H for some constant symmetric matrix H with
respect to G, and therefore Φ21+Φ22G ≡ H[Φ11+Φ12G] for every G in a nonempty
open set of symmetric G, and consequently for every symmetric G. This leads to
Φ21 = HΦ11 and Φ22 = HΦ12. Substitute both relations into the left-hand side of
(2.14) to conclude that it holds with μ = 0. �

Symmetric MRDEs also have the following monotonicity property which shares
some resemblance with [17, Theorem 2] due originally to [38]; but there are differ-
ences in the conditions. For example, there is no requirement for both A12 and A21

to be positive semidefinite here; though this condition would guarantee that the
solution of the symmetric MRDE exist for all time [16, Proposition 1]. We shall
write M ≺ W to mean that W − M is positive definite and likewise M � W to
mean that W −M is positive semidefinite.
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Theorem 2.5. For real symmetric (MRDE), i.e., A is real and (2.1) holds, let

X(t) and X̃(t) be its two solutions with initial values X(0) and X̃(0), respectively.

If X(0) � X̃(0), then X(t) � X̃(t) over the interval [0, T ) of their existence.

Proof. It can be proved similarly to [17, Theorem 2]. For completeness, we present

a proof here. Let W ≡ W (t) = X̃(t) −X(t). It can be verified that

W ′ = W

[
A22 −

X + X̃

2
A12

]T

+

[
A22 −

X + X̃

2
A12

]
W

whose solution can be written as W (t) = Ψ(t)W (0)Ψ(t)T, where Ψ(t) is the solution
of

Ψ′ =

[
A22 −

X + X̃

2
A12

]
Ψ, Ψ(0) = I.

Therefore, W (t) must remain positive semidefinite over the interval [0, T ) in which

both X(t) and X̃(t) have no singularity. �

We should prefer

Numerical methods that retain these properties: Symme-
try and Two-Sided Bilinear Rational dependence on X(0)
and Monotonicity in the sense of Theorem 2.5, in their
computed solutions XXX, other things being equal.

Observe also that bilinear rational functions that propagate matrix symmetry are
closed under composition.

Remark 2.1. For Hermitian MRDEs, everything in this subsection holds, after
conjugate transposes ( · )∗ replace transposes ( · )T.

3. Unconventional anadromic numerical methods

We shall start by presenting two simple second order anadromic numerical meth-
ods to pave the way for our general format of higher order ones which also fall into
the framework of modified integrators in [8].

3.1. Two simple second order methods. These methods are based on a par-
tition technique. Consider one step of integration from τ to τ + θ, where θ is the
current step-size. Define the matrix-valued function f(X ,Y) as

(3.1)
f(X ,Y) = AAA21−XAAA11+AAA22Y−XAAA12Y , where
all AAAij = Aij(τ + 1

2θ).

Let XXX ≈ X(τ ). An approximation ZZZ ≈ X(τ + θ) can be computed by solving

(3.2)
YYY −XXX

θ/2
= f(XXX,YYY ),

ZZZ − YYY

θ/2
= f(ZZZ,YYY ),

where YYY ≈ X(τ + 1
2θ) and ZZZ ≈ X(τ + θ). This defines a relatively inexpensive

second order Anadromic method

(3.3) Updating Formula: ZZZ = QQQ(θ, τ + 1
2θ,XXX)

that preserves all three properties, namely, Bilinear Relation, Generalized Inverse
Property, and Symmetry, as we shall prove. It is relatively inexpensive because the
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determining equations for YYY and ZZZ are linear in YYY andZZZ, unlike preexisting implicit
methods which have had to solve nonlinear matrix equations. By Anadromic, we
mean that if we integrate the MRDE backwards from τ + θ to τ using the same
updating formula with the negative step size −θ and with ZZZ in place of X(τ + θ),
in the absence of rounding errors XXX is recovered back exactly, namely

XXX ≡QQQ(−θ, (τ + θ) − 1
2θ,ZZZ).

An anadromic method has many attractive properties. It is of at least second order
convergence:

[QQQ(θ, τ + 1
2θ,X(τ ))−X(τ + θ)]/θ = O(θ2).

In fact, more can be said. Let ZZZ(τ ) be the computed solution with ZZZ(0) = X(0) at
t = τ which is fixed and a multiple of θ. Then [22, p. 222]

ZZZ(τ ) −X(τ ) = E2(τ )θ2 + E4(τ )θ4 + E6(τ )θ6 + · · · ,
i.e, its error’s asymptotic expansion in terms of θ contains only even powers of
θ. In the past, such a property has been considered ideal to apply (traditional)
extrapolation methods [7, 14, 21] to achieve higher order approximations.

The simple second order method (3.2) is closely related to the implicit midpoint
rule applied to (2.3), an observation E. Hairer [23] generously shared with the
authors. The observation makes it possible to significantly simplify our earlier
analysis [35] in constructing higher order methods.

Theorem 3.1 (Hairer). Let PPP 1 ≈ P (τ + θ) be the solution obtained by applying
the implicit midpoint rule to (2.3) from t = τ to τ + θ:

PPP 1 −PPP

θ
= AAA

PPP 1 +PPP

2
, PPP =

(m

m SSS
n TTT

)
≈ P (τ ), PPP 1 =

( m

m SSS1

n TTT 1

)
≈ P (τ + θ),

where AAA = A(τ + 1
2θ). Assume that SSS, SSS1, and SSS+SSS1 are invertible. If XXX = TTTSSS−1,

then

(3.4) YYY
SSS +SSS1

2
=

TTT + TTT 1

2
, ZZZ = TTT 1SSS

−1
1 ,

where YYY and ZZZ are defined by (3.2).

Proof. It suffices to prove that ŶYY = [(TTT + TTT 1)/2][(SSS + SSS1)/2]−1 and ẐZZ = TTT 1SSS
−1
1

satisfy both defining equations in (3.2) for YYY and ZZZ. We have the following identi-
ties:

(ŶYY −XXX)
SSS1 +SSS

2
=

TTT +TTT 1

2
−XXX

SSS1 −SSS + 2SSS

2

=
TTT +TTT 1

2
−XXX

SSS1 −SSS

2
− TTT

=
TTT 1 − TTT

2
−XXX

SSS1 −SSS

2
,(3.5)

(ẐZZ − ŶYY )
SSS1 +SSS

2
=

TTT 1 − TTT

2
− ẐZZ

SSS1 −SSS

2
.(3.6)

Partition AAA = (AAAij) in the conformal way. The implicit midpoint rule gives

SSS1 −SSS = 1
2θ[AAA11(SSS1 +SSS) +AAA12(TTT 1 + TTT )],

TTT 1 −TTT = 1
2θ[AAA21(SSS1 +SSS) +AAA22(TTT 1 + TTT )].
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Substitute SSS1 −SSS and TTT 1 −TTT into (3.5) and (3.6), and then apply [(SSS +SSS1)/2]−1

from the right, and then divide by 1
2θ to see that ŶYY and ẐZZ satisfy both defining

equations in (3.2) for YYY and ZZZ, respectively. �

Updating formula QQQ above is not alone in its simplicity and preservation of the
desired properties. An obvious alternative is

(3.7)
YYY a −XXX

θ/2
= f(YYY a,XXX),

ZZZa − YYY a

θ/2
= f(YYY a,ZZZa),

where YYY a ≈ X(τ + 1
2θ) and ZZZa ≈ X(τ + θ). Which circumstances can favor

one alternative over the other is not known at this time. Both preserve the same
properties of the MRDE’s solution. It comes as no surprise that this alternative
method (3.7) closely relates to the implicit midpoint rule as well, except this time
the rule is applied to the second linear reduction (2.4). We state the theorem but
omit its proof as it is similar to Theorem 3.1.

Theorem 3.2. Let RRR1 ≈ R(τ +θ) be the solution by applying the implicit midpoint
rule to (2.4) from t = τ to τ + θ:

RRR1 −RRR

θ
= −RRR1 +RRR

2
AAA, RRR =

( m n

TTT , −SSS
)
≈ R(τ ), RRR1 =

( m n

TTT 1, −SSS1

)
≈ R(τ + θ),

where AAA = A(τ + 1
2θ). Assume that SSS, SSS1, and SSS+SSS1 are invertible. If XXX = SSS−1TTT ,

then

(3.8)
SSS +SSS1

2
YYY a =

TTT + TTT 1

2
, ZZZa = SSS−1

1 TTT 1,

where YYY a and ZZZa are defined by (3.7).

The method defined by (3.2) appeared in 1980s in an unpublished note of the
second author, and was also discovered independently by Babuška and Majer [4],
where its second order convergence was proved by a brute force verification. But
its many properties discussed in Section 4 and which are critical to our effort to
integrate MRDEs to pass poles were not known, much less exploited.

3.2. Higher order methods. Higher order approximations have been derived
from the two simple anadromic methods (3.2) and (3.7) in at least two different
ways: extrapolation [7, 14] and composition [24, 27]. The focus of this article is
about a third method given below. This third method can be cast in the frame-
work of modified integrators in the sense of [8]. We apply the simple second order
anadromic methods in Subsection 3.1 to truncated modified versions of the dif-
ferential equation (MRDE). For more on numerical integrations through modified
differential equations, the interested reader is referred to [8]. Specifically, for one
step of integration from τ to τ + θ, we shall seek a sequence of matrices

(3.9) Ã� =

( m n

m A11,� A12,�

n A21,� A22,�

)
for � = 0, 1, 2, . . . ,

depending only on A(t) and its derivatives at t = τ + 1
2θ. We then define

(3.10) f�(X ,Y) = A21,� −XA11,� + A22,�Y − XA12,�Y ,
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matrix-valued functions having two matrix arguments X and Y . Let c� be the
coefficient of t2�+1 in the power series of tanh(t) [1, p. 85]:

∞∑
�=0

c�t
2�+1 =

exp(2t) − 1

exp(2t) + 1
= tanh(t)

= t− 1

3
t3 +

2

15
t5 − 17

315
t7 +

62

2835
t9 + O(t11).(3.11)

Finally, our (2k)th order numerical method takes the form

(3.12)
YYY −XXX

θ/2
=

k−1∑
�=0

( 1
2θ)

2�c�f�(XXX,YYY ),
ZZZ − YYY

θ/2
=

k−1∑
�=0

( 1
2θ)

2�c�f�(ZZZ,YYY )

where YYY ≈ X(τ + 1
2θ) and ZZZ ≈ X(τ + θ). This defines a consistent numerical

method for solving (MRDEs) so long as

lim
θ→0

Aij,0 = Aij(τ ) for i, j ∈ {1, 2}.

In particular, if Aij,0 = Aij(τ + 1
2θ), it has second order convergence because ZZZ by

(3.12) differs from the one by (3.1) and (3.2) by O(θ3). In seeking Aij,� later, care
is taken so that (3.12) defines an anadromic method of order 2k. In particular,

f0(X ,Y) ia always taken to be the same as the f(X ,Y) in (3.1), i.e.,
Aij,0 is Aij(t) evaluated at τ + 1

2θ.

What remains is to find what f�(X ,Y) should be for � ≥ 1.
It is important to notice that the determining equations for YYY and ZZZ are again

linear in YYY and ZZZ, making the method easy to implement.
The entry of the coefficients c� may seem mysterious at first. In a way, it is

a demonstration of the close link between (MRDE) and the linear ODE (2.3),
especially for the time-invariant A. See (3.18) below.

In accordance with [8], the modified differential equation of (MRDE) to which
the application of (3.2) from t = τ to τ + θ yields ZZZ = X(τ + θ) exactly is

(3.13) X̃ ′ = Ã21 − X̃Ã11 + Ã22X̃ − X̃Ã12X̃, X̃(τ ) = X(τ ),

where

(3.14) Ã =
∞∑
�=0

( 1
2θ)

2�c�Ã� ≡
(
Ã11 Ã12

Ã21 Ã22

)
.

The method (3.12) is simply a result of an application of (3.2) to (3.13) with Ã
truncated. The corresponding modified differential equation of (2.3) for the implicit
midpoint rule is

(3.15)
dP̃

dt
= ÃP̃ ,

and at the same time (3.12) is related, in much the same way as stated in Theo-

rem 3.1 for (3.2), to the implicit midpoint rule applied to (3.15) with Ã truncated.
The method (3.12) is not alone in its simplicity and preservation of the desired

properties, either, as we commented before about (3.2). An obvious alternative is

(3.16)
YYY a −XXX

θ/2
=

k−1∑
�=0

( 1
2θ)

2�c�f�(YYY a,XXX),
ZZZa − YYY a

θ/2
=

k−1∑
�=0

( 1
2θ)

2�c�f�(YYY a,ZZZa),
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where YYY a ≈ X(τ + 1
2θ) and ZZZa ≈ X(τ + θ). This alternative method can also be

cast as a modified integrator of (3.7) for (MRDE). It is, not surprisingly, related to
the implicit midpoint rule applied to

(3.17)
dR̃

dt
= −R̃Ã

after Ã is truncated.
This close relationship between the proposed higher order methods and the im-

plicit midpoint rule plays an instrumental role in simplifying our earlier construc-

tions in [35] of these higher order methods. That is, the sought Ã for our methods
(3.12) (and for (3.16), too) is the same as the one in the modified differential
equation (3.15) for the implicit midpoint rule. The latter is detailed in [36]. We
summarize the findings in what follows, broken into two cases, the simpler case
first.

The time-invariant case. Now A does not depend on time t. It is found in [36]
that

(3.18) Ã =
1
1
2θ

·
(
eθA − I

) (
eθA + I

)−1
=

∞∑
�=0

( 1
2θ)

2�c�A
2�+1.

Theorem 3.3. Suppose A is constant. Then with Ã� = A2�+1 for all �, (3.12)
defines an anadromic method of order 2k for (MRDE). Moreover, if X(τ ) = XXX,

(3.19) X(τ + θ) = ZZZ + 2 ( 1
2θ)

2k+1ckfk(XXX,XXX) + O(θ2k+2).

Proof. The first claim has been proved already. The second claim follows by com-
paring ZZZ to the one in (3.12) after letting k = ∞. �

Example 3.1. Consider a scalar time-invariant RDE, i.e., m = n = 1 and X ′ =
αX2 + βX + γ which can be written in the form of (MRDE):

X ′ = γ −X(−β/2 + δ) + (β/2 + δ)X −X(−α)X,

where δ is a constant and arbitrary. The corresponding matrix is

(3.20) A =

(
−β/2 + δ −α

γ β/2 + δ

)
.

It can be verified that

A2 =

(
(−β/2 + δ)2 − αγ −2αδ

2γδ (β/2 + δ)2 − αγ

)
.

In particular, A2 = (β2/4 − αγ)I if δ = 0. Then for δ = 0,

A2�+1 = (β2/4 − αγ)�A,

f0(X ,Y) = γ −X (−β/2) + (β/2)Y − X (−α)Y ,

f�(X ,Y) = (β2/4 − αγ)� f0(X ,Y).

Let Θ = β2/4 − αγ. The first equation in (3.12) gives
(3.21)

YYY = G( 1
2θ,XXX)

def
=

[
1 + (β/2)

∑k
�=0(

1
2θ)

2�+1c�Θ
�
]
X0 + γ

∑k
�=0(

1
2θ)

2�+1c�Θ
�

1 − (αX0 + β/2)
∑k

�=0(
1
2θ)2�+1c�Θ�

.
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Since all f�(X ,Y) ≡ f�(Y ,X ), the second equation in (3.12) must yield ZZZ =
G( 1

2θ,YYY ). In the case of k = ∞, ZZZ ≡ X(τ + θ) provided XXX = X(τ ) by the
idea of the modified differential equation. In fact, more can be said for the example
(with δ = 0), namely also YYY ≡ X( 1

2θ) for k = ∞, too (which may fail for nonscalar
RDE, however) [35, Example 7.1]. In view of this fact,

(3.22) XXX →

[
1 + (β/2)

∑k−1
�=0 θ2�+1c�Θ

�
]
XXX + γ

∑k−1
�=0 θ2�+1c�Θ

�

1 − (αXXX + β/2)
∑k−1

�=0 θ2�+1c�Θ�

is an order 2k updating formula for scalar RDE X ′ = αX2 + βX + γ.
Closed formulas for YYY , ZZZ for the case δ �= 0 can also be established; but they are

much more complicated. The key lies in computing A2�+1. The matrix A in (3.20)
can be written as

A = δI + B, B =

(
−β/2 −α
γ β/2

)
, B2 = ΘI.

Therefore, we have for m = 2� + 1,

Am =

m∑
j=0

(
m

j

)
δm−jBj =

�∑
j=0

(
m

2j

)
δm−2jΘjI +

�∑
j=0

(
m

2j + 1

)
δm−2j−1Θj B

from which each entry of Am can be explicitly written out and so is f�(X ,Y) for
each and every �. We omit the detail. �

The time-varying case. This is a much more complicated situation than the

time-invariant case. With the help of Mathematica, in [36] we have found Ã� in
terms of values of A(t) and its derivatives at t = τ + 1

2θ for � up to 4, and they
yield methods in the form of (3.12) for k = 1, 2, 3, 4, 5 corresponding to orders 2,

4, 6, 8, and 10 of convergence. However, the complexity of Ã� measured by the
number of summands grows exponentially (in fact it has 4� terms). Therefore,
anadromic methods of orders higher than 6 are probably impractical in general. In

what follows we present Ã� for � up to 2. Denote for � ≥ 0,

(3.23) AAA� =
d�

dt�
A(t)

∣∣∣∣
t=τ+

1
2 θ

.

We have from [36]

Ã0 = AAA0 = A(τ + 1
2θ),(3.24)

Ã1 = AAA3
0 + (AAA0AAA1 −AAA1AAA0) −

1

2
AAA2,(3.25)

Ã2 = AAA5
0 −

1

2
AAA0(AAA0AAA1 −AAA1AAA0)AAA0 + (AAA3

0AAA1 −AAA1AAA
3
0)(3.26)

+
1

2

[
AAA0(AAA1)

2 − 2AAA1AAA0AAA1 + (AAA1)
2AAA0

]
− 1

4
(AAA2

0AAA2 + 3AAA0AAA2AAA0 +AAA2AAA
2
0) +

1

4
(AAA1AAA2 −AAA2AAA1)

− 1

4
(AAA0AAA3 −AAA3AAA0) +

1

16
AAA4.

These formulas for Ã� contain (higher order) derivatives which can be hard or
expensive to evaluate sometimes. In such situations, naturally, we may approximate
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the derivatives by divided differences. There are many ways to do so. But care
must be taken in order to retain the anadromic property of the method and at the
same time maintain the claimed order of convergence. Another consideration is to
maximize the usage of any evaluated A(t) (and possibly its low order derivatives)
between consecutive steps of integration. Define

(3.27) t0 = τ + 1
2θ, t−i = t0 − i( 1

2θ), ti = t0 + i( 1
2θ),

whose layout is shown in the following picture, where [t−1, t1] is the current interval
of integration:

�t0
τ+ 1

2 θ

�t1
τ+θ

�t2
τ+ 3

2 θ

�t3
τ+2θ

�t4
τ+ 5

2 θ

�t−1

τ

�t−2

τ− 1
2 θ

�t−3

τ−θ

�t−4

τ− 3
2 θ

.

The formulas (3.24)–(3.26) call for evaluating A(t) and its derivatives at

. . . , t−4, t−2, t0, t2, t4, . . . .

Our goal is to revise these formulas so that derivatives beyond (or even) the first or-
der derivatives, are not needed. Define the first and second order divided-differences

A†({α, β}) def
=

A(α) −A(β)

α− β
, A††({α, β, γ}) def

=
A†({α, β}) −A†({β, γ})

α− γ
.

In considering the objectives we mentioned above, we proposed in [36] the following
sets of methods for derivative approximations:

A′(t0) ≈ A†({t−1, t1}),(3.28a)

A′′(t0) ≈ 2A††({t−1, t0, t1}),(3.28b)

A′(t0) ≈ A†({t−2, t2}),(3.29a)

A′′(t0) ≈ 2A††({t−2, t0, t2}),(3.29b)

A′′′(t0) ≈
12

θ2

[
A′(t1) + A′(t−1)

2
−A†({t−1, t1})

]
,(3.30a)

A(4)(t0) ≈
48

θ2
[
A′†({t−1, t1}) − 2A††({t−1, t0, t1})

]
,(3.30b)

A′′′(t0) ≈
8

θ2
[
A†({t−2, t2}) −A†({t−1, t1})

]
,(3.31a)

A(4)(t0) ≈
32

θ4

(
A(t2) + A(t−2)

2
− 4

A(t1) + A(t−1)

2
+ 3A(t0)

)
,(3.31b)

A′′′(t0) ≈
8

(2θ)2
[
A†({t−4, t4}) −A†({t−2, t2})

]
,(3.32a)

A(4)(t0) ≈
32

(2θ)4

(
A(t4) + A(t−4)

2
− 4

A(t2) + A(t−2)

2
+ 3A(t0)

)
.(3.32b)
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Table 3.1. Anadromic method (3.12) is of order 2k

k Ã� and b̃� for 0 ≤ � ≤ k − 1 given by

odr2 1 (3.24)

odr4 2 (3.24), (3.25)
odr4a 2 (3.24), (3.25) with (3.28)

odr4b 2 (3.24), (3.25) with (3.29)

odr6 3 (3.24), (3.25), (3.26)
odr6a 3 (3.24), (3.25) with (3.28), (3.34) with (3.30)

odr6b 3 (3.24), (3.25) with (3.29), (3.35) with (3.31)

odr6c 3 (3.24), (3.25) with (3.29), (3.34) with (3.32)

With them, we readily define a new Ã1 as

(3.33)
New Ã1 is obtained by (3.25) with (3.28) or with (3.29) (by which
we mean the first and second order derivativesAAA1 and AAA2 in (3.25)
are approximated by either (3.28) or (3.29)).

Then (3.12) with k = 2, (3.24), and (3.33) defines anadromic methods of order

4. However, for methods of orders higher than 4, simply taking these Ã� given in
(3.24), (3.25), and (3.26) and replacing the derivatives of A(t) at t = t0 by the
corresponding approximations above would not work. For example, (3.12) with
k = 2, (3.24), (3.33), and (3.26) after (all or some of ) the derivatives approximated

does not have order 6. It turns out that using (3.25) with (3.28) or (3.29) for Ã1

affects the next Ã2.

(3.34)
For (3.25) with (3.28): new Ã2 is obtained by replacing the last
line of (3.26) by 1

6 (AAA0AAA3 −AAA3AAA0) − 1
24AAA4;

(3.35)
For (3.25) with (3.29): new Ã2 is obtained by replacing the last
line of (3.26) by 17

12 (AAA0AAA3 −AAA3AAA0) − 17
48AAA4.

In theory, sixth order anadromic methods are now readily available by approximat-

ing the derivatives in the new Ã2 given in (3.34) or (3.35) by any combinations of
the approximation methods in (3.28)—(3.32). But again in choosing the approxi-
mations, we should keep in mind reusing the values of A(t) (and possibly its first
order derivatives) between consecutive steps of integration as much as possible. Ta-
ble 3.1 gives our suggested anadromic methods of second, fourth, and sixth orders
of convergence.

4. Preserved properties of proposed methods

In this section we shall prove that any scheme defined by (3.12) preserves all three
properties discussed in Section 2, namely, Bilinear Rational Relation, Generalized
Inverse Property, and Symmetry.
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4.1. Bilinear rational property. Define Hij , functions of θ, by

(4.1)
k−1∑
�=0

( 1
2θ)

2�c�

(
A11,� A12,�

A21,� A22,�

)
=

( m n

m H11 H12

n H21 H22

)
.

Solving for YYY and ZZZ in (3.12) yields

YYY = [(2/θ)I − (H22 −XXXH12)]
−1[(2/θ)XXX + (H21 −XXXH11)],(4.2a)

ZZZ = [(2/θ)YYY + (H21 + H22YYY )][(2/θ)I + (H11 + H12YYY )]−1.(4.2b)

The formulas (4.2a) and (4.2b) (combined with Theorem 2.1 and the closure of
bilinear rational functions under composition) show that in the absence of rounding
errors, the numerical solution preserves the bilinear rational property discussed in
Subsection 2.1.

Two consequences result from such preservation. The first one is the conservation
of the change in rank. If XXX is changed, the rank of change is conserved in YYY and
ZZZ, like the change in the exact solution of (MRDE). See Theorem 2.2. Therefore,
the approximate solutions computed numerically by any of our anadromic methods
conserve the rank of change to the initial value provided that they use the same
stepsizes θ for one approximate solution as for another approximate solution, and
provided roundoff does not interfere. The second consequence is that the solution
monotonicity property as in Theorem 2.5 is retained by ZZZ (see Theorem 4.3 below).

4.2. Generalized inverse property. For convenience, we identify (MRDE) by its
defining parameters {m,n,A,X0}. Doing so allows us to identify its complementary
(cMRDE) as one of MRDE in the form (MRDE) but with the defining parameters

{n,m,Ac, U0} , where Ac
def
=

( n m

n A22 A21

m A12 A11

)
.

Notice that Ac relates to A through permuting symmetrically the blocked columns
and blocked rows of A. Through identifying (cMRDE) as another (MRDE), we can
apply the numerical scheme (3.12) to (cMRDE) with f� defined by(

A22,� A21,�

A12,� A11,�

)
obtained through again permuting symmetrically the blocked columns and blocked
rows of matrices in (3.9). The application will lead to a numerical method for
(cMRDE) as follows:

VVV = [(2/θ)I − (H11 −UUUH21)]
−1[(2/θ)UUU + (H12 −UUUH22)],(4.3a)

WWW = [(2/θ)VVV + (H12 + H11VVV )][(2/θ)I + (H22 + H21VVV )]−1,(4.3b)

where UUU ≈ U(τ ), VVV ≈ U(τ + 1
2θ) and WWW ≈ U(τ + θ), and matrices Hij are still

defined in (4.1). Theorem 4.1 below shows that the generalized inverse property is
always preserved.

Theorem 4.1. Let YYY and ZZZ be defined by (4.2), and let VVV and WWW be defined by
(4.3).

(1) If UUUXXX = I (and thus n ≥ m), then VVV YYY = WWWZZZ = I.
(2) If XXXUUU = I (and thus n ≤ m), then YYY VVV = ZZZWWW = I.
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Proof. We shall only prove item 1 since the other one can be dealt with similarly.
Suppose that UUUXXX = I. Write Qii = (2/θ)I −Hii. Then

VVV YYY = [Q11 +UUUH21]
−1

[UUUQ22 + H12] [Q22 +XXXH12]
−1

[XXXQ11 + H21] .

We have UUU [Q22 +XXXH12] = UUUQ22 + H12 because of UUUXXX = I. Thus

[UUUQ22 + H12] [Q22 +XXXH12]
−1

= UUU,

and therefore
VVV YYY = [Q11 +UUUH21]

−1UUU [XXXQ11 + H21] = I.

To prove WWWZZZ = I. Set Pii = (2/θ)I + Hii. Then

WWWZZZ = [P11VVV + H12] [P22 + H21VVV ]−1 [P22YYY + H21] [P11 + H12YYY ]−1 .

We have [P22 + H21VVV ]YYY = P22YYY + H21 because VVV YYY = I. Thus

[P22 + H21VVV ]
−1

[P22YYY + H21] = YYY ,

and therefore
WWWZZZ = [P11VVV + H12]YYY [P11 + H12YYY ]

−1
= I,

as will be shown. �
4.3. Symmetry property. Our first few proofs, independently by the authors and
David Bindel [5], of the Symmetry Property summarized in the following theorem
were long and complicated. The proof given below is due to Hairer [23]. Also in the
theorem, we impose conditions on Aij,� in (4.4). These conditions are automatically
satisfied by the formulas in Subsection 3.2 if they are true for Aij , as proved in [36].

Theorem 4.2. In (3.12), if

(4.4) A21,� = AT
21,�, A11,� = −AT

22,�, A12,� = AT
12,� for all �,

and XXX = XXXT, then ZZZ = ZZZT.

Proof. Consider the associated linear differential equation

(4.5)
dP̂

dt
= ÂP̂ , P̂ (τ ) =

(
SSS
TTT

)
,

where Â =
∑k−1

�=0 ( 1
2θ)

2�c�Ã� obtained after truncating Ã in (3.14), and XXX = TTTSSS−1.
ZZZ relates to the implicit midpoint rule solution

PPP 1 −PPP

θ
= Â

PPP 1 +PPP

2
, PPP =

(m

m SSS
n TTT

)
, PPP 1 =

( m

m SSS1

n TTT 1

)
for (4.5) by ZZZ = TTT 1SSS

−1
1 . The assumptions in (4.4) imply ÂTJ = −JÂ, where J

is defined in (2.10). It is not hard to verify that d
dt [P̂ (t)TJP̂ (t)] = 0 which says

P̂ (t)TJP̂ (t) is a quadratic first integral of (4.5). Since the implicit midpoint rule
preserves quadratic first integral3 [24, p.101], we have

PPPT
1 JPPP 1 = PPPTJPPP ⇒ −SSST

1TTT 1 + TTTT
1SSS1 = −SSSTTTT + TTTTSSS.

XXX is symmetric; so is SSSTXXXSSS = SSSTTTT . Thus −SSST
1 TTT 1 + TTTT

1SSS1 = 0, i.e., SSST
1 TTT 1 is

symmetric; so is ZZZ = TTT 1SSS
−1
1 = SSS−T

1 (SSST
1 TTT 1)SSS

−1
1 , as was to be shown. �

3That PPPT
1 JPPP 1 = PPPTJPPP can also be directly verified, by noting that B = (I− 1

2 θ ̂A)−1(I+ 1
2θ ̂A)

is symplectic, i.e., BTJB = J , and PPP 1 = BPPP .
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It is worth emphasizing that despite this symmetry property of our methods
in the absence of rounding errors, numerically computed solutions often deviate
from being symmetric (Hermitian) after many integration steps. This is what we
observed in our numerical experiments and drove us to seek many different proofs
of Theorem 4.2. Therefore, it is recommended to symmetrize the computed ZZZ every
few steps in implementation. Fortunately the cost of doing so is marginal, relative
to the overall cost of integration.

The next theorem says ZZZ defined by (4.2) retains the solution monotonicity

property as given in Theorem 2.5. Let ŶYY and ẐZZ be defined by (4.2) after XXX is

changed to X̂XX; and let θ0 be the smallest θ for which one of the following fails to
be nonsingular:

(2/θ)I − (H22 −XXXH12), (2/θ)I + (H11 + H12YYY ),

(2/θ)I − (H22 − X̂XXH12), (2/θ)I + (H11 + H12ŶYY ).

Theorem 4.3. For a real symmetric (MRDE), assume (4.4) and that all Aij,� are

real. If both XXX and X̂XX are real and XXX � X̂XX, then ZZZ � ẐZZ for θ ∈ [0, θ0).

Proof. By Theorem 4.2, both ZZZ and ẐZZ are real symmetric. For θ ∈ [0, θ0), ẐZZ −ZZZ

is continuous in θ; so are its eigenvalues. Since rank(ẐZZ −ZZZ) = rank(X̂XX −XXX) as θ

increases from 0 to any number that is less than θ0. Thus the eigenvalues of ẐZZ −ZZZ
cannot change their signs. �

We point out that this theorem is intrinsically different from the obvious conclu-

sion that if XXX ≺ X̂XX, then ZZZ ≺ ẐZZ for sufficiently small θ. This is so for approximate
solutions because it is so for the exact solutions of a real symmetric MRDE. First

for this obvious conclusion to hold, one must assume strictly XXX ≺ X̂XX; and sec-
ondly how small a θ is sufficiently small depends on the smallest eigenvalue of the

difference X̂XX −XXX. For this second point, θ0 in Theorem 4.3 can be taken to be

(4.6) θ0 = min

{
2

‖AAA0‖(1 + ‖XXX‖) ,
2

‖AAA0‖(1 + ‖X̂XX‖)

}

for the second order method, where ‖·‖ is any consistent matrix norm. For methods
of order 2k, it is

(4.7) θ0 = min{δ(‖XXX‖), δ(‖X̂XX‖)},

where δ(η) is the smallest positive root of

1 − (1 + η)
k−1∑
�=0

|c�‖Ã�‖( 1
2θ)

2�+1 = 0.

Neither θ0 in (4.6) nor (4.7) depends on the difference X̂XX −XXX.

Remark 4.1. For Hermitian MRDEs, everything in this subsection holds, after
conjugate transposes ( · )∗ replace transposes ( · )T.
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5. The group of two-sided bilinear rational functions

Given an n-by-m matrix G of fixed perhaps unequal dimensions but indetermi-
nate (variable) elements, the set of all invertible bilinear rational n-by-m matrix-
valued functions

F (G)
def
= [Φ21 + Φ22G][Φ11 + Φ12G]−1,

where constant matrices Φij are the submatrices of the invertible matrix

Φ =

( m n

m Φ11 Φ12

n Φ21 Φ22

)
,

constitute a group BRn,m. Its operation is composition, as we shall see in a mo-
ment. The domain of F (G) is nonempty because the m rows of (Φ11 Φ12) must
be linearly independent. Note that the semi-group of all n-by-m bilinear rational
functions includes noninvertible functions corresponding to noninvertible matrices
Φ, but none of these are related to MRDE all of whose linear reductions generate
invertible matrizants Φ. Consequently, what follows is confined to the group of
invertible bilinear rational functions.

Given three invertible (m + n)-by-(m + n) matrices

Φj =

( m n

m Φ11,j Φ12,j

n Φ21,j Φ22,j

)
for j = 1, 2 and 3

corresponding respectively to three bilinear rational matrix functions

Fj(G)
def
= [Φ21,j + Φ22,jG][Φ11,j + Φ12,jG]−1,

we find that if Φ1 = Φ2Φ3, then F1(G) = F2(F3(G)). Conversely, if F1(G) =
F2(F3(G)), then we find Φ1 = βΦ2Φ3 for some nonzero scalar β. In general each
bilinear rational matrix function F (G) in BRn,m is associated with a ray of invert-
ible matrices βΦ generated by running β through all nonzero scalars. Therefore,
the group BRn,m of n-by-m bilinear rational matrix functions F (G) is isomorphic
to the Multiplicative Quotient Group of invertible (m + n)-by-(m + n) matrices Φ
by nonzero scalars β. This quotient group is denoted by PGLm+n , which stands
for the Projective General Linear Group. We shall drop the dimensions m and n
henceforth since they will not change.

One connection between F in group BR and βΦ in PGL is an equation(
I

F (G)

)
= βΦ

(
I
G

)
S−1 = β

(
Φ11 Φ12

Φ21 Φ22

)(
I
G

)
S−1

in which S = β[Φ11 + Φ12G]. Here the nonzero scalar β cancels away, and S is
invertible except when G falls at a pole of F (G) = [Φ21 + Φ22G][Φ11 + Φ12G]−1,
where det(Φ11 + Φ12G) = 0, which turns out to force F (G) to ∞. A second
connection is an unobvious equation(

F (G), −I
)

= S̃−1
(
G, −I

)(Φ̃11 Φ̃12

Φ̃21 Φ̃22

)
,

where (
Φ̃11 Φ̃12

Φ̃21 Φ̃22

)
=

(
Φ11 Φ12

Φ21 Φ22

)−1

and S̃ = −GΦ̃12 + Φ̃22,
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which exhibits the same function F (G) = [GΦ̃12 − Φ̃22]
−1[−GΦ̃11 + Φ̃21] now

associated with βΦ−1 in PGL. The two formulas for F justify the term “two-
sided ”. In other words, there are two isomorphisms between the group BR of
bilinear rational matrix functions F and the rays of matrices βΦ and βΦ−1 (the
two sets coincide) in the quotient group PGL.

The two isomorphisms supply two ways to compute F (G) numerically for any
particular G. Sometimes one way is far more accurate than the other. For instance,
if one of the matrices(

Φ11 Φ12

Φ21 Φ22

)
and

(
Φ̃11 Φ̃12

Φ̃21 Φ̃22

)
=

(
Φ11 Φ12

Φ21 Φ22

)−1

has just one relatively tiny singular value, this matrix can usually provide a more
accurately computed value of F (G) than can the other matrix, all but one of
whose singular values must be relatively tiny. However, sometimes neither matrix
provides accurate results; such can be the case when both matrices have too many
relatively tiny singular values. Such is sometimes the case for bilinear rational
matrix functions that solve matrix Riccati differential equations.

Solutions X(t) of the matrix Riccati differential equation (MRDE) can be re-
garded not so much as functions of t selected by an initial value X(0), but rather
as sample-values X(t) = Ft(X(0)) of members of the group BR selected by t and
sampled at an indeterminate X(0). Thus, as t increases from 0, the differential
equation’s solution Ft( · ) traces a trajectory through the group BR of bilinear
rational matrix functions F starting at the identity function F0( · ).

But numerical methods that would compute Ft( · ) from its matrix Φt often en-
counter numerical instability. Instead, numerical methods try to compute X(t) =
Ft(X(0)) well only for a specific initial value X(0). Our anadromic methods ap-
proximate Ft(X(0)) by a sequence of sample-values F (X(0)) each drawn from the
same group BR of functions F ( · ), and all intended to follow nearly along the
trajectory traced by Ft(X(0)) regardless of X(0).

6. Marching over poles

The updating formula defined by (3.12) preserves a generalized inverse relation
between solutions of complementary MRDEs so long as their numerical solutions are
computed with matching step-sizes θ small enough that all needed matrix inverses
exist. But what do we gain from this? When XXX is square naturally we could switch
between the given MRDE forXXX and its complementary MRDE forUUU , whichever has
no poles. This should allow us to march over poles without stopping the numerical
integration unnecessarily, unlike existing methods!

What about nonsquare cases? Then such a switch mechanism cannot possibly
work because neither of two nonsquare generalized inverses determines the other
uniquely. Lemmas 6.1 and 6.2 below show that the updating formula will work
just fine as long as we do not accidentally step on any poles, or too close to the
poles lest the associated linear matrix equations in the formulas (4.2) would be too
ill-conditioned to let us solve them with adequate accuracy.

Lemma 6.1. Suppose n × m matrix X has full column rank, and let U = {U :

UX = I}. If UX̂ = I for all U in a nonempty relatively open set of U , then X̂ = X ,
or in other words, X is uniquely determined by a nonempty relatively open set in
the collection of its (left) generalized inverses.
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Proof. No proof is necessary if X is square. Suppose X is not square, and let V be
from the nonempty open set of U . So V is m× n and VX = I. We claim both X
and V can be embedded in invertible matrices such that

(6.1)

(
V
V̌

)(
X , X̌

)
=

(
Im 0
0 In−m

)
.

This is because both V and X have full rank, and therefore they can be embedded
in invertible matrices, respectively,(

V
Y

)
, and

(
X , Z

)
.

The matrix(
V
Y

)(
X Z

)
=

(
Im VZ
YX YZ

)
=

(
Im 0
YX In−m

)(
Im VZ
0 YZ − YXVZ

)
is invertible, and

In =

(
Im 0
YX In−m

)−1 (V
Y

)(
X Z

)(Im VZ
0 YZ − YXVZ

)−1

=

(
Im 0

−YX In−m

)(
V
Y

)(
X Z

)(Im −VZ(YZ − YXVZ)−1

0 (YZ − YXVZ)−1

)
.

Now take
V̌ = Y − YXV , X̌ = (Z − XVZ)(YZ − YXVZ)−1

to get (6.1). We have, by (6.1), XV + X̌ V̌ = I. If UX = I too, then

U = U(XV + X̌ V̌) = V + (UX̌ )V̌.

On the other hand every matrix of the form U def
= V + GV̌ satisfies UX = I.

Therefore, the nonempty relatively open set of all solutions U of UX = I contains
all V+GV̌ as G runs through a corresponding nonempty open set of all n× (n−m)

matrices. If X̂ satisfies

(V + GV̌)X̂ = I = (V + GV̌)X
for all G in the nonempty open set of n × (n −m) matrices, then these equations
must hold for all n × (n −m) matrices because they constrain in the entries of G

linearly. Therefore, V(X̂ −X ) = 0 and GV̌(X̂ −X ) = 0 for all n× (n−m) matrices

G, whence V̌(X̂ − X ) = 0, and finally

X̂ − X = I(X̂ − X ) = (XV + X̌ V̌)(X̂ − X ) = 0,

as expected. �

Similarly we have

Lemma 6.2. Suppose n×m matrix X has full row rank, and let U = {U : XU =

I}. If X̂ U = I for all U in a nonempty relatively open set of U , then X̂ = X , or
in other words, X is uniquely determined by a nonempty relatively open set in the
collection of its (right) generalized inverses.

Lemmas 6.1 and 6.2, together with the generalized inverse property, guarantee
that the computed approximation at τ + θ by (4.2) is still meaningful,
even if there are poles in between τ and τ + θ! We shall now explain.
Suppose that XXX ≈ X(τ ) has full rank, and let U be a nonempty relatively open
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Figure 6.1. U1 and W being pointwise close and the generalized
inverse relations imply that ZZZ and X(τ + θ) must be close as well,
despite the fact that X(t) may have pole singularities in the interval
(τ, τ + θ).

set of XXX’s generalized inverses. Assume that the solution to the complementary
(cMRDE) from t = τ to τ +θ with U(τ ) taking any matrix in U has no singularity.
Formulas (4.2) produce ZZZ while formulas (4.3) with any UUU in U produces WWW which
approximates U(τ + θ) well as determined by the size of θ, provided UUU = U(τ ). If
θ is small enough, the continuity of the solution of the complementary (cMRDE)
with respect to the initial values and the continuity of WWW as defined by (4.3) with
respect to UUU imply that

U1
def
= {U(τ + θ) : U(τ ) = UUU ∈ U } and W

def
= {WWW : UUU ∈ U }

are nonempty relatively open sets of the generalized inverses of X(τ + θ) and of ZZZ,
respectively, because of Theorems 2.3 and 4.1. Since W approximates U1 pointwise
as determined by the size of θ, and X(τ+θ) is uniquely determined by U1 and ZZZ by
W , we conclude that ZZZ must approximate X(τ + θ) well. What happens if XXX does
not have full rank? We can then perturb XXX arbitrarily little so that the perturbed
XXX has full rank. Assume the solution to (MRDE) from t = τ to τ+θ is continuously
dependent on X(τ ) even across the possible singularities within the interval. Then
the limiting argument (i.e., by letting the perturbations to XXX go to zero) will lead
to the same conclusion, i.e., ZZZ approximates X(τ + θ) well. Figure 6.1 presents a
pictorial view of our argument here, where the relatively open sets U1 and W are
pointwise close and the generalized inverse relations imply that ZZZ and X(τ + θ)
must be close to the extent comparable to the pointwise closeness between U1 and
W .

In this explanation of (4.2) being able to march over the poles, we made two
critical assumptions:

Assumption 1: From t = τ to τ + θ the solutions of the complementary
(cMRDE) are well behaved with U(τ ) taking values in a nonempty relatively
open set of the generalized inverses of XXX.
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Assumption 2: The solution to (MRDE) from t = τ to τ +θ is continuously
dependent on X(τ ) = XXX even across the possible singularities within the
interval. This is needed only when XXX does not have full rank.

We point out that the conditioning of associated linear systems must be moni-
tored to prevent them from becoming too ill-conditioned. This is a well-understood
issue in Numerical Linear Algebra and there are existing tools for the purpose; see
[13, 2, 20, 25, 26, 43, 45] and references therein.

7. A linear stability theory

A linear stability theory for our methods can be established. Not surprisingly,
it coincides with the one in [36] for the modified implicit midpoint rules. Consider

(7.1) x′ = λx ≡ −x(−λ1) + xλ2, x(0) = x0,

where λ = λ1 + λ2 and both λi have the same sign. It takes the form of (MRDE)
with

m = n = 1, A =

(
−λ1 0
0 λ2

)
,

and it is a time-invariant MRDE for which we know all Aij,� to give anadromic
numerical methods of any even order. Since A is diagonal,

Aj =

(
(−λ1)

j 0

0 λj
2

)
, f�(X ,Y) = −X (−λ1)

2�+1 + λ2�+1
2 Y .

Therefore (3.12) yields

YYY =
1 −

∑k−1
�=0 ( 1

2θ)2�+1c�(−λ1)
2�+1

1 −
∑k−1

�=0 ( 1
2θ)2�+1c�λ

2�+1
2

XXX,

ZZZ =
1 +

∑k−1
�=0 ( 1

2θ)2�+1c�λ
2�+1
2

1 +
∑k−1

�=0 ( 1
2θ)2�+1c�(−λ1)2�+1

YYY

=
1 +

∑k−1
�=0 ( 1

2θ)2�+1c�λ
2�+1
2

1 −
∑k−1

�=0 ( 1
2θ)2�+1c�λ

2�+1
2

· 1 −
∑k−1

�=0 ( 1
2θ)2�+1c�(−λ1)

2�+1

1 +
∑k−1

�=0 ( 1
2θ)2�+1c�(−λ1)2�+1

XXX.(7.2)

As k → ∞, ZZZ goes to[
C

( ∞∑
�=0

( 1
2θ)

2�+1c�λ
2�+1
2

)]−1

C

( ∞∑
�=0

( 1
2θ)

2�+1c�(−λ1)
2�+1

)
XXX

= eθλ2 e−[θ(−λ1)]XXX = eθ(λ1+λ2)XXX,

where C (·) denotes the Cayley transform4. This suggests that the magnitude of

(7.3) ρ2k(μ)
def
=

1 +
∑k−1

�=0 c�μ
2�+1

1 −
∑k−1

�=0 c�μ2�+1

should provide a quantitative measure to the linear stability of our methods. Thus
we define the region of stability of the (2k)th order method to be

(7.4) R2k = {μ : |ρ2k(μ)| ≤ 1}

4Given square matrix Γ such that I + Γ is nonsingular, the Cayley Transform of Γ is defined

as C (Γ)
def
= (I − Γ)(I + Γ)−1. The Cayley transform is an involution, i.e., C (C (Γ)) = Γ.
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which is exactly the same as the one for the modified implicit midpoint rules in
[36]. Ideally, R2k should contain only those μ with �(μ) ≤ 0, and none of those μ
with �(μ) > 0. It turns out that only R2 has this property. When

(7.5) 1
2θλ =

θλ

2
∈ R2k,

ZZZ by (7.2) has nonincreasing magnitude. Therefore it is important to make sure
(7.5) holds for λ with �(λ) ≤ 0 by using the appropriate step-size θ. What this
means for (MRDE) is that at any point τ of integration, we need to use these θ
satisfying (7.5) for all

λ = −λ1 + λ2, λ1 ∈ eig(A11 + A12X), λ2 ∈ eig(A22 −XA12),

with �(λ) ≤ 0, where eig( · ) is the set of eigenvalues of a matrix.
The contour plots of |ρ2k(μ)| lying in R2k can be found in [36]. They imply

• R2 contains5 only those μ with �(μ) ≤ 0, and none of those μ with �(μ) >
0, while all other R2k for k ≥ 1 do not have this property, unfortunately.

• Restricted to real μ, R2k with odd k has the perfect stability property, i.e.,
|ρ2k(μ)| ≤ 1 for μ ≤ 0, and |ρ2k(μ)| > 1 for μ > 0. This is important for the
case when all eigenvalues are real because then only real μ is of interest. One
of our examples in the next section does have all real negative eigenvalues.

8. Numerical examples

In this section, we shall present a few numerical tests to demonstrate the capa-
bility of our methods, especially when the solution has singularities. The tests are
for constant step-sizes. In a way, a robust variable step-size implementation would
be more efficient. As this paper is already long, we decide to explore robust variable
step-size implementations elsewhere. Notice that what we have established in this
paper naturally offers two approaches to pursue—using local truncation errors or
running two methods of different orders (e.g., second and fourth, fifth and sixth)
to estimate local errors to vary the stepsizes.

Example 1. This is a scalar time-varying MRDE

(8.1) x′ = t + x2 for all t ≥ 0, x(0) = 0

whose solution is expressible in terms of Bessel functions:

(8.2) x(t) = − d

dt
ln
(√

tJ−1/3(2t
3/2/3)

)
=

√
t
J2/3(2t

3/2/3)

J−1/3(2t3/2/3)
,

and it has lots of poles. See the top left plot in Figure 8.1. The corresponding A is
linear, making our methods for the time-varying case rather easy to apply. In fact,
the matrices in (3.24), (3.25), and (3.26) are(

0 −1
t 0

)
,

(
−1 t
−t2 1

)
,

(
3t/2 −t2

t3 + 1 −3t/2

)
,

respectively. We shall pretend not to know the solution to formula (8.2) but we try
to compute x(t) for 0 ≤ t ≤ 10. The results are shown in Figure 8.1 whose bottom
left and right plots are for the absolute and relative errors:

|XXXi − x(τi)|,
∣∣∣∣XXXi − x(τi)

x(τi)

∣∣∣∣
5This can be easily shown by noting that ρ2(μ) = (1 + μ)/(1− μ).
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Figure 8.1. Top Left: the solution to Riccati Equation x′ =
t + x2 with x(0) = 0. Note its many poles. Top Right: The
absolute errors in the computed x(10) as θ varies by odr2, odr4,
and odr6. Bottom left and right: Absolute and relative errors of
computed solutions. In each of the two, the top two error curves are
for odr2, the middle two curves for odr4, and the bottom two curves
for odr6.

at the integration points. The top right plot shows the absolute errors in the
computed x(10) as θ varies. Figure 8.1 clearly shows that our proposed numerical
methods are able to compute x(τi) with accuracy dictated by the step-size θ and
the order convergence, despite the singularity poles. It is not surprising that both
errors get bigger near singularity poles. Also notice that the relative errors increase,
too, near zeros of x(t). �
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Figure 8.2. Diagonal entries of the solution to X ′ = −X2 +
I. The first row plots the diagonal entries of the exact solution,
and the last two rows plot the absolute and relative errors of the
computed diagonal entries with two different step sizes by odr2,
odr4, and odr6. To see which error curve is for which, one simply
sees that errors decrease with orders. It is interesting to note that the
singularity at (ln 3)/2 = 0.54931 in other entries did not spill over to
the computed second diagonal entry.

Example 2. It is taken from [9], where a few time-invariant cases with known
solutions are examined. The MRDE we tested is

X ′ = −X2 + I, X(0) = P diag(−1,−2,−3)P−1, P =

⎛⎝ 4 −5 9
−8 18 −17

4 −37 9

⎞⎠ .
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Notice that this MRDE is not really symmetric by definition because its initial
value is not. The exact solution is known to be

(8.3) X(t) = P diag

(
sinh t− cosh t

cosh t− sinh t
,
sinh t− 2 cosh t

cosh t− 2 sinh t
,
sinh t− 3 cosh t

cosh t− 3 sinh t

)
P−1,

and thus there are two poles (ln 2)/2 = 0.34657 and (ln 3)/2 = 0.54931 in the
solution. Again we shall pretend not to know the solution and compute X(t) for
0 ≤ t ≤ 1. The first row of Figure 8.2 plots the diagonal entries of X(t) (Note
there is only one pole presented in x22(t), as can be verified from the analytic
solution), while the second and third rows plot the absolute and relative errors of
the corresponding computed diagonal entries by odr2, odr4, and odr6. Errors in other
computed off-diagonal entries behave similarly. Once again the computed X(τi)
have accuracy dictated by the step-size θ and the order of the method, despite the
singularity poles. Note that the poles are more eminently displayed in the computed
solution when the step-size θ is made smaller. This is expected because the smaller
θ is, the closer some of integration points τi get to the poles. We also examined the
absolute errors in the computed X(1) as θ varies. A plot similar to the top right
one in Figure 8.1 was obtained but omitted here to save space. This means that our
methods display the claimed rate of convergence at t = 1, even after marching over
two poles between t = 0 and t = 1. It is interesting to note that the singularity at
(ln 3)/2 = 0.54931 in other entries did not get spilled over to the computed second
diagonal entry. �

Example 3. This example originates from a stiff two-point boundary value problem
in [6]. It was used as a test example in [15]. Here m = n = 2, X(−1) = 0, and

A =

⎛⎜⎜⎝
−t/(2ε) 0 1/ε 0

0 0 0 1/ε
1/2 1 0 t/(2ε)
0 1 0 0

⎞⎟⎟⎠ ,

where 0 < ε � 1. According to Dieci [15] who was interested in −1 ≤ t ≤ 1, this
MRDE’s solution has an initial layer at t = −1 and then it approaches

X(t) ≈
(
−ε/t 2 (

√
ε + t) / [2 (1 − t

√
ε)]

0
√
ε

)
for t away from zero; then there is a smooth transition around the origin and then

X(t) ≈
(
t/2

√
ε

0
√
ε

)
for t > 0. In [15], tests were done primarily with ε = 10−5 and for −1 ≤ t ≤ 1. We
shall also take ε = 10−5. This problem is very stiff, and we use it to show suitability
of the linear stability theory outlined in Section 7. Figure 8.3 plots computed
X(t) that can be repeated with smaller step-sizes to make sure its correctness,
as well as the four eigenvalues along the solution trajectory: λ = −λ1 + λ2 with
λ1 ∈ eig(A11 + A12X) and λ2 ∈ eig(A22 − XA12). All eigenvalues are real and
negative with minλ about −105/2. The linear stability regions shown in [36] suggest
that our methods of orders 4, 8, 12, . . . would have to use very small step-sizes θ
in order not to encounter any stability problem, while our methods of order 2, 6,
10, · · · do not have the same problem. But this is a time-varying MRDE for which
the highest order of our methods given here is 6. Our findings are as follows.
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Figure 8.3. Top four plots: the solution to Example 3. Bottom
four plots: Four eigenvalue trajectories λ = −λ1 + λ2 (all real and
negative with minλ about −105/2), where λ1 ∈ eig(A11 + A12X)
and λ2 ∈ eig(A22 −XA12).
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(1) We need to use θ = 10−2/2 or smaller for odr2 and odr6 to have reasonable
numerical results, i.e., each entry of X(t) behaves like what’s being plotted
in Figure 8.3.

(2) Our odr2 and odr6 encounter no stability problem with θ = 10−2/2 or
smaller. For odr6, it is because its stability region R6 contains all (−∞, 0],
even though it does not contain the entire left half-plane.

(3) Our odr4 produces erroneously numerical solutions for θ bigger than 10−4/2.
This is very much consistent with what (7.5) suggests. Note the stability

region R4 contains [−
√

3, 0] but not (−∞,−
√

3). So (7.5) suggests the
step-size θ should satisfy

θ

2
· 105

2
≤

√
3 ⇒ θ ≤ 6.9282 × 10−5.

When we use θ = 10−4/2 or smaller, odr4 does integrate the MRDE beau-
tifully. �

9. Conclusions

We have derived a family of unconventional anadromic numerical methods for
MRDEs. These methods preserve three important properties of MRDE, namely,
Bilinear Rational Relation, Generalized Inverse Property, and Symmetry, as well
as conserving the Rank of Change to the initial value and Solution’s Monotonicity
in the sense of Theorem 4.3. Among them, only Symmetry is widely preserved by
pre-existing methods. The other two properties are mostly ignored thus far. Some
of the advantages of our methods are:

(1) They have a distinctive capability that is able to march over solution sin-
gularities to render meaningful numerical results.

(2) They are anadromic, which implies they have even orders of convergence.
(3) They are semi-implicit, involving only linear systems of matrix equations

to solve, and thus easily implementable.

Methods of any even order of convergence for time-invariant MRDEs, and of orders
up to 10 for time-varying MRDEs are established. But the methods for time-
varying MRDEs get complicated quickly as the order of convergence increases; so
only methods up to 6 are stated in detail. Our methods can be cast into the
framework of modified integrators in the sense of [8].

A linear stability theory is established to validate the suitability of our methods
for stiff MRDE, especially those with real eigenvalues by which we mean all λ =
−λ1 + λ2 are real, where λ1 ∈ eig(A11 + A12X) and λ2 ∈ eig(A22 − XA12), and
X ≡ X(t) is the solution.

Our numerical tests are currently done within MATLAB and for constant step-
size implementation. In a way, a robust variable step-size implementation would
be more efficient. Since this paper is already lengthy, we shall investigate various
varying step-size strategies elsewhere. Using the local truncation error formulas we
have gotten in Theorem 3.3 for time-invariant MRDEs and running two methods
of consecutive even orders are two natural strategies that we will be exploiting.

In explaining why our methods can march over solution poles and still correctly
render meaningful numerical results, we made two crucial assumptions in Section 6.
In Theorem 2.3, it is assumed that the solutions X(t) to (MRDE) and U(t) to
(cMRDE) have only isolated singularities and share none in common. A better
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quantitative understanding of these assumptions is conceivably important for a
better implementation of our methods.
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