Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Archimedean maps of higher genera


Authors: Ján Karabáš and Roman Nedela
Journal: Math. Comp. 81 (2012), 569-583
MSC (2010): Primary 05C30; Secondary 05C10, 05C25
DOI: https://doi.org/10.1090/S0025-5718-2011-02502-0
Published electronically: May 13, 2011
MathSciNet review: 2833509
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper focuses on the classification of vertex-transitive polyhedral maps of genus from $ 2$ to $ 4$. These maps naturally generalise the spherical maps associated with the classical Archimedean solids. Our analysis is based on the fact that each Archimedean map on an orientable surface projects onto a one- or a two-vertex quotient map. For a given genus $ g\geq 2$ the number of quotients to consider is bounded by a function of $ g$. All Archimedean maps of genus $ g$ can be reconstructed from these quotients as regular covers with covering transformation group isomorphic to a group $ \mathrm{G}$ from a set of $ g$-admissible groups. Since the lists of groups acting on surfaces of genus $ 2,3$ and $ 4$ are known, the problem can be solved by a computer-aided case-to-case analysis.


References [Enhancements On Off] (What's this?)

  • 1. L. Babai, Vertex-transitive graphs and vertex-transitive maps, J. Graph Theory 15 (1991), no. 6, pp. 587-627. MR 1133814 (92m:05064)
  • 2. O. V. Bogopolski, Classifying the actions of finite groups on orientable surfaces of genus $ 4$, Siberian Adv. Math. 7 (1997), pp. 9-38. MR 1604157 (2000e:30083)
  • 3. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24(3-4):235-265, 1997. MR 1484478
  • 4. U. Brehm and E. Schulte, Polyhedral maps in ``Handbook of discrete and computational geometry'', J. E. Goodman and J. O'Rourke (Eds.), Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 477-491. MR 1730174
  • 5. S. A. Broughton, Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1991), pp. 233-270. MR 1090743 (92b:57021)
  • 6. J. Cannon, W. Bosma, C. Fieker and A. Steel (Eds.), Handbook of Magma Functions, Edition 2.16 (2010), Sydney, 5017 p.
  • 7. M. Conder and P. Dobcsányi, Determination of all regular maps of small genus, J. Combin. Theory Ser. B 81 (2001), pp. 224-242. MR 1814906 (2002f:05088)
  • 8. J. H. Conway, H. Burgiel and Ch. Goodman-Strass, ``Symmetries of things'', A. K. Peters Ltd. 2008. MR 2410150 (2009c:00002)
  • 9. H. M. Cundy and A. P. Rollett, ``Mathematical models'', 2nd Ed. Oxford University Press, 1961. MR 0124167 (23:A1484)
  • 10. J. D. Dixon and B. Mortimer, ``Permutation groups'', Springer-Verlag, New York, 1996. MR 1409812 (98m:20003)
  • 11. The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; 2006, (http://www.gap-system.org).
  • 12. G. Gromadzki, ``Groups of Automorphisms of Compact Riemann and Klein Surfaces'', Wydawnictwo U. W. Sz. Pedag., Bydgoszc, 1993.
  • 13. A. Hurwitz, Über algebraische Gebilde mit Eindeutigen Transformationen in sich, Mathematische Annalen 41 (3), (1893), pp. 403-442 MR 1510753
  • 14. J. L. Gross and T. W. Tucker, ``Topological graph theory'', Dover Publications Inc., Mineola, NY, 2001, second edition. MR 1855951
  • 15. B. Grünbaum, ``Convex polytopes'', Graduate Texts in Mathematics 221, Springer-Verlag, New York, 2003, second edition. MR 1976856 (2004b:52001)
  • 16. B. Grünbaum and G. C. Shephard, ``Tilings and Patterns'', W. H. Freeman and Co., New York, 1986. MR 992195 (90a:52027)
  • 17. G. A. Jones and D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. (3) 37 (1978), pp. 273-307. MR 0505721 (58:21744)
  • 18. J. Karabáš, Archimedean solids, http://www.savbb.sk/~karabas/science.html#arch.
  • 19. J. Karabáš, Actions of finite groups on Riemann surfaces of higher genera, http://www.savbb.sk/~karabas/science.html#rhsu.
  • 20. J. H. Kwak and Y. S. Kwon, Unoriented Cayley Maps, Studia Scientiarum Mathematicarum Hungarica 43(2) (2006), pp. 137-157 MR 2229619 (2007g:05049)
  • 21. A. Malnič, R. Nedela and M. Škoviera, Lifting graph automorphisms by voltage assignments, European J. Combin. 21 (2000), no. 7, pp. 927-947. MR 1787907 (2001i:05086)
  • 22. A. Malnič, R. Nedela and M. Škoviera, Regular homomorphisms and regular maps, European J. Combin. 23 (2002), no. 4, pp. 449-461. MR 1914482 (2003g:05045)
  • 23. A. Mednykh and R. Nedela, Enumeration of unrooted maps of a given genus, J. Combin. Theory Ser. B 96 (2006), pp. 706-729. MR 2236507 (2007g:05088)
  • 24. B. Mohar and C. Thomassen, ``Graphs on Surfaces'', John Hopkins University Press, Baltimore, 2001. MR 1844449 (2002e:05050)
  • 25. R. Nedela and M. Škoviera, Exponents of orientable maps, Proc. London Math. Soc. (3), 75 (1997), no. 1, pp. 1-31. MR 1444311 (98i:05059)
  • 26. D. Pellicer and A. Ivić Weiss, Uniform maps on surfaces of non-negative Euler characteristic, preprint.
  • 27. V. Proulx, ``Classification of the Toroidal Groups'', Ph.D. thesis, Columbia University, 1977. MR 2627033
  • 28. R. B. Richter, J. Širáň, R. Jajcay, T. W. Tucker and M. E. Watkins, Cayley maps, J. Combin. Theory Ser. B 95 (2005), pp. 189-245. MR 2171363 (2006g:05063)
  • 29. ``The Small Groups Library'', http://www-public.tu-bs.de:8080/~hubesche/small.html.
  • 30. E. Steinitz, Polyeder und raumeinteilungen, ``Enzyklopedie Math. Wiss''. 3 (Geometrie), Leipzig, 1922, pp. 1 - 139.
  • 31. O. Šuch, Vertex-transitive maps on torus, preprint.
  • 32. ``Archimedean solid'', Wikipedia, http://en.wikipedia.org/wiki/Archimedean_solid.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 05C30, 05C10, 05C25

Retrieve articles in all journals with MSC (2010): 05C30, 05C10, 05C25


Additional Information

Ján Karabáš
Affiliation: Science and Research Institute, Matej Bel University, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia
Email: karabas@savbb.sk

Roman Nedela
Affiliation: Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica, Slovakia; Mathematical Institute, Slovak Academy of Sciences, Ďumbierska 1, 974 11 Banská Bystrica, Slovakia
Email: nedela@savbb.sk

DOI: https://doi.org/10.1090/S0025-5718-2011-02502-0
Keywords: Polyhedron, Archimedean solid, map, surface, group, graph embedding
Received by editor(s): September 14, 2007
Received by editor(s) in revised form: November 4, 2010
Published electronically: May 13, 2011
Additional Notes: Both authors were partially supported by the grants APVV-51-009605 and VEGA 1/0722/08, grants of Slovak Ministry of Education.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society