Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Ergodic scales in fractal measures

Author: Palle E. T. Jorgensen
Journal: Math. Comp. 81 (2012), 941-955
MSC (2010): Primary 42A15, 43A10, 47A35, 60G10
Published electronically: July 7, 2011
MathSciNet review: 2869044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We will consider a family of fractal measures on the real line $ \mathbb{R}$ which are fixed, in the sense of Hutchinson, under a finite family of contractive affine mappings. The maps are chosen such as to leave gaps on $ \mathbb{R}$. Hence they have fractal dimension strictly less than $ 1$. The middle-third Cantor construction is one example. Depending on the gaps and the scaling factor, it is known that the corresponding Hilbert space $ L^{2}(\mu)$ exhibits strikingly different properties. In this paper we show that when $ \mu$ is fixed in a certain class, there are positive integers $ p$ such that multiplication by $ p$ modulo $ 1$ induces an ergodic automorphism on the measure space (support($ \mu$), $ \mu$).

References [Enhancements On Off] (What's this?)

  • 1. S. Albeverio, P. E. T. Jorgensen, and A. M. Paolucci.
    Multiresolution wavelet analysis of integer scale Bessel functions.
    J. Math. Phys., 48(7):073516, 24, 2007. MR 2337697 (2008e:42060)
  • 2. A. S. Besicovitch.
    Almost periodic functions.
    Dover Publications Inc., New York, 1955. MR 0068029 (16:817a)
  • 3. Laurent Bienvenu and Mathieu Sablik.
    The dynamics of cellular automata in shift-invariant topologies.
    In Developments in language theory, volume 4588 of Lecture Notes in Comput. Sci., pages 84-95. Springer, Berlin, 2007. MR 2380422 (2009c:31006)
  • 4. Qi-Rong Deng.
    Reverse iterated function system and dimension of discrete fractals.
    Bull. Aust. Math. Soc., 79(1):37-47, 2009. MR 2486879 (2010j:28013)
  • 5. Persi Diaconis.
    [book review] Probabilistic symmetries and invariance principles, Olav Kallenberg, Probability and its Applications, Springer, New York, 2005.
    Bull. Amer. Math. Soc., 46:691-696, 2009. MR 2525743
  • 6. Remco Duits, Luc Florack, Jan de Graaf, and Bart ter Haar Romeny.
    On the axioms of scale space theory.
    J. Math. Imaging Vision, 20(3):267-298, 2004. MR 2060148 (2005k:94005)
  • 7. Dorin E. Dutkay and Palle E. T. Jorgensen.
    Wavelets on fractals.
    Rev. Mat. Iberoam., 22(1):131-180, 2006. MR 2268116 (2008h:42071)
  • 8. Dorin Ervin Dutkay and Palle E. T. Jorgensen.
    Analysis of orthogonality and of orbits in affine iterated function systems.
    Math. Z., 256(4):801-823, 2007. MR 2308892 (2009e:42013)
  • 9. Dorin Ervin Dutkay and Palle E. T. Jorgensen.
    Fourier frequencies in affine iterated function systems.
    J. Funct. Anal., 247(1):110-137, 2007. MR 2319756 (2008f:42007)
  • 10. Dorin Ervin Dutkay and Palle E. T. Jorgensen.
    Fourier series on fractals: a parallel with wavelet theory.
    In Radon transforms, geometry, and wavelets, volume 464 of Contemp. Math., pages 75-101. Amer. Math. Soc., Providence, RI, 2008. MR 2440130 (2010a:42138)
  • 11. Dorin Ervin Dutkay and Palle E. T. Jorgensen.
    Quasiperiodic spectra and orthogonality for iterated function system measures.
    Math. Z., 261(2):373-397, 2009. MR 2457304 (2010b:28013)
  • 12. Paul R. Halmos.
    Lectures on ergodic theory.
    Chelsea Publishing Co., New York, 1960. MR 0111817 (22:2677)
  • 13. Tian-You Hu and Ka-Sing Lau.
    Spectral property of the Bernoulli convolutions.
    Adv. Math., 219(2):554-567, 2008. MR 2435649 (2010a:42094)
  • 14. John E. Hutchinson.
    Fractals and self-similarity.
    Indiana Univ. Math. J., 30(5):713-747, 1981. MR 625600 (82h:49026)
  • 15. Alex Iosevich, Nets Katz, and Steen Pedersen.
    Fourier bases and a distance problem of Erdős.
    Math. Res. Lett., 6(2):251-255, 1999. MR 1689215 (2000j:42013)
  • 16. Palle E. T. Jorgensen, Keri Kornelson, and Karen Shuman.
    Iterated function systems, moments, and transformations of infinite matrices.
    Memoirs of the AMS, 213 (2011), no. 1003.
  • 17. Palle E. T. Jorgensen and Steen Pedersen.
    Dense analytic subspaces in fractal $ L\sp 2$-spaces.
    J. Anal. Math., 75:185-228, 1998. MR 1655831 (2000a:46045)
  • 18. Palle E. T. Jorgensen and Steen Pedersen.
    Spectral pairs in Cartesian coordinates.
    J. Fourier Anal. Appl., 5(4):285-302, 1999. MR 1700084 (2002d:42027)
  • 19. Palle E. T. Jorgensen and Myung-Sin Song.
    Entropy encoding, Hilbert space, and Karhunen-Loève transforms.
    J. Math. Phys., 48(10):103503, 22, 2007. MR 2362796 (2008k:94016)
  • 20. Olav Kallenberg.
    Probabilistic symmetries and invariance principles.
    Probability and its Applications (New York). Springer, New York, 2005. MR 2161313 (2006i:60002)
  • 21. King-Shun Leung and Ka-Sing Lau.
    Disklikeness of planar self-affine tiles.
    Trans. Amer. Math. Soc., 359(7):3337-3355 (electronic), 2007. MR 2299458 (2008k:52046)
  • 22. Kasso A. Okoudjou and Robert S. Strichartz.
    Weak uncertainty principles on fractals.
    J. Fourier Anal. Appl., 11(3):315-331, 2005. MR 2167172 (2006f:28011)
  • 23. Steen Pedersen.
    On the dual spectral set conjecture.
    In Current trends in operator theory and its applications, volume 149 of Oper. Theory Adv. Appl., pages 487-491. Birkhäuser, Basel, 2004. MR 2063764 (2005h:42016)
  • 24. S. K. Sen, Ravi P. Agarwal, and Gholam Ali Shaykhian.
    Golden ratio versus pi as random sequence sources for Monte Carlo integration.
    Math. Comput. Modelling, 48(1-2):161-178, 2008. MR 2431330 (2009e:65012)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 42A15, 43A10, 47A35, 60G10

Retrieve articles in all journals with MSC (2010): 42A15, 43A10, 47A35, 60G10

Additional Information

Palle E. T. Jorgensen
Affiliation: Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419

Keywords: Fourier expansion, fractal measure, bases in Hilbert space, ergodic automorphism.
Received by editor(s): October 6, 2009
Received by editor(s) in revised form: January 16, 2011
Published electronically: July 7, 2011
Additional Notes: This work was supported in part by a grant from the National Science Foundation.
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society