Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Matricial filters and crystallographic composite dilation wavelets


Authors: Jeffrey D. Blanchard and Ilya A. Krishtal
Journal: Math. Comp. 81 (2012), 905-922
MSC (2010): Primary 42C40
DOI: https://doi.org/10.1090/S0025-5718-2011-02518-4
Published electronically: July 12, 2011
MathSciNet review: 2869042
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2006 Guo, Labate, Lim, Weiss, and Wilson introduced the theory of MRA composite dilation wavelets. We continue their work by studying the filter properties of such wavelets and present several important examples.


References [Enhancements On Off] (What's this?)

  • 1. D. Bakić, I. Krishtal, and E. N. Wilson.
    Parseval frame wavelets with $ E\sb n\sp {(2)}$-dilations.
    Appl. Comput. Harmon. Anal., 19(3):386-431, 2005. MR 2186451 (2006g:42056)
  • 2. J. D. Blanchard.
    Existence and accuracy results for composite dilation wavelets.
    Ph.D. dissertation, 2007.
    Washington University in St. Louis. MR 2710862
  • 3. J. D. Blanchard and K. R. Steffen.
    Crystallographic Haar-type composite dilation wavelets.
    In Wavelets and Multi-scale Analysis: theory and applications. Birkhäuser Boston, Inc., March 2011.
  • 4. C. Cabrelli, C. Heil, and U. Molter.
    Accuracy of lattice translates of several multidimensional refinable functions.
    J. Approx. Theory, 95(1):5-52, 1998. MR 1645975 (99g:42038)
  • 5. F. Colonna, G. Easley, K. Guo, and D. Labate.
    Radon transform inversion using the shearlet representation.
    Appl. Comput. Harmon. Anal., 29(2):232-250, 2010. MR 2652460
  • 6. K. Guo, G. Kutyniok, and D. Labate.
    Sparse multidimensional representations using anisotropic dilation and shear operators.
    In Wavelets and splines: Athens 2005, Mod. Methods Math., pages 189-201. Nashboro Press, Brentwood, TN, 2006. MR 2233452 (2007c:42050)
  • 7. K. Guo and D. Labate.
    Optimally sparse multidimensional representation using shearlets.
    SIAM J. Math. Anal., 39(1):298-318, 2007. MR 2318387 (2008k:42097)
  • 8. K. Guo and D. Labate.
    Characterization and analysis of edges using the continuous shearlet transform.
    SIAM J. Imaging Sci., 2(3):959-986, 2009. MR 2551249 (2011b:94004)
  • 9. K. Guo, D. Labate, W. Lim, G. Weiss, and E. N. Wilson.
    The theory of wavelets with composite dilations.
    In Harmonic analysis and applications, Appl. Numer. Harmon. Anal., pages 231-250. Birkhäuser Boston, Boston, MA, 2006. MR 2249312 (2007d:42072)
  • 10. K. Guo, D. Labate, W. Lim, G. Weiss, and E. N. Wilson.
    Wavelets with composite dilations and their MRA properties.
    Appl. Comput. Harmon. Anal., 20(2):202-236, 2006. MR 2207836 (2006j:42056)
  • 11. E. Hernández and G. Weiss.
    A first course on wavelets.
    Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1996. MR 1408902 (97i:42015)
  • 12. R. Houska.
    The nonexistence of shearlet-like scaling multifunctions that satisfy certain minimally desirable properties and characterizations of the reproducing properties of the integer lattice translations of a countable collection of square integrable functions.
    Ph.D. dissertation, 2009.
    Washington University in St. Louis. MR 2713543
  • 13. I. Krishtal, B. Robinson, G. Weiss, and E. N. Wilson.
    Some simple Haar-type wavelets in higher dimensions.
    J. Geom. Anal., 17(1):87-96, 2007. MR 2302875 (2008a:42018)
  • 14. G. Kutyniok, J. Lemvig, and W.-Q Lim.
    Compactly supported shearlets.
    submitted, 2010.
  • 15. W.-Q Lim.
    The discrete shearlet transform: A new directional transform and compactly supported shearlet frames.
    IEEE Trans. Image Processing, 19(5):1166-1180, 2010. MR 2723739
  • 16. J. MacArthur.
    Compatible dilations and wavelets for the wallpaper groups.
    preprint, 2009.
  • 17. J. MacArthur and K. Taylor.
    Wavelets with crystal symmetry shifts.
    submitted, 2009.
  • 18. A. Ron and Z. Shen.
    Affine systems in $ L\sb 2(\mathbb{R}\sp d)$: the analysis of the analysis operator.
    J. Funct. Anal., 148(2):408-447, 1997. MR 1469348 (99g:42043)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 42C40

Retrieve articles in all journals with MSC (2010): 42C40


Additional Information

Jeffrey D. Blanchard
Affiliation: Department of Mathematics and Statistics, Grinnell College, Grinnell, Iowa 50112
Email: jeff@math.grinnell.edu

Ilya A. Krishtal
Affiliation: Department of Mathematics, Northern Illinois University, Dekalb, Illinois 60115
Email: krishtal@niu.edu

DOI: https://doi.org/10.1090/S0025-5718-2011-02518-4
Keywords: Filters, wavelets, composite dilation wavelets, bracket product, unitary extension principle
Received by editor(s): November 22, 2009
Received by editor(s) in revised form: January 16, 2011
Published electronically: July 12, 2011
Additional Notes: The first author was partially supported by NSF DMS (VIGRE) Grant number 0602219.
The second author was partially supported by NSF DMS Grant number 0908239.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society