Design of rational rotation-minimizing rigid body motions by Hermite interpolation

Authors:
Rida T. Farouki, Carlotta Giannelli, Carla Manni and Alessandra Sestini

Journal:
Math. Comp. **81** (2012), 879-903

MSC (2010):
Primary 65-XX, 53-XX

DOI:
https://doi.org/10.1090/S0025-5718-2011-02519-6

Published electronically:
July 8, 2011

MathSciNet review:
2869041

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The construction of space curves with rational rotation- minimizing frames (RRMF curves) by the interpolation of Hermite data, i.e., initial/final points and and frames and , is addressed. Noting that the RRMF quintics form a proper subset of the spatial Pythagorean-hodograph (PH) quintics, characterized by a vector constraint on their quaternion coefficients, and that spatial PH quintic Hermite interpolants possess two free scalar parameters, sufficient degrees of freedom for satisfying the RRMF condition and interpolating the end points and frames can be obtained by relaxing the Hermite data from to . It is shown that, after satisfaction of the RRMF condition, interpolation of the end frames can always be achieved by solving a quadratic equation with a positive discriminant. Three scalar freedoms then remain for interpolation of the end-point displacement , and this can be reduced to computing the real roots of a degree 6 univariate polynomial. The nonlinear dependence of the polynomial coefficients on the prescribed data precludes simple *a priori* guarantees for the existence of solutions in all cases, although existence is demonstrated for the asymptotic case of densely-sampled data from a smooth curve. Modulation of the hodograph by a scalar polynomial is proposed as a means of introducing additional degrees of freedom, in cases where solutions to the end-point interpolation problem are not found. The methods proposed herein are expected to find important applications in exactly specifying rigid-body motions along curved paths, with minimized rotation, for animation, robotics, spatial path planning, and geometric sweeping operations.

**1.**G. Albrecht and R. T. Farouki (1996), Construction of Pythagorean-hodograph interpolating splines by the homotopy method,*Adv. Comp. Math.***5**, 417-442. MR**1414289 (97k:65033)****2.**H. I. Choi and C. Y. Han (2002), Euler-Rodrigues frames on spatial Pythagorean-hodograph curves,*Comput. Aided Geom. Design***19**, 603-620. MR**1937124 (2003i:53002)****3.**H. I. Choi, D. S. Lee, and H. P. Moon (2002), Clifford algebra, spin representation, and rational parameterization of curves and surfaces,*Adv. Comp. Math.***17**, 5-48. MR**1902534 (2003c:53003)****4.**G. Farin (1997),*Curves and Surfaces for Computer Aided Geometric Design*, 4th edition, Academic Press, San Diego. MR**1412572 (97e:65022)****5.**R. T. Farouki (2008),*Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable*, Springer, Berlin. MR**2365013 (2008k:65027)****6.**R. T. Farouki (2010), Quaternion and Hopf map characterizations for the existence of rational rotation-minimizing frames on quintic space curves,*Adv. Comp. Math.***33**, 331-348. MR**2718102****7.**R. T. Farouki, M. al-Kandari, and T. Sakkalis (2002), Structural invariance of spatial Pythagorean hodographs,*Comput. Aided Geom. Design***19**, 395-407. MR**1917337 (2003g:65019)****8.**R. T. Farouki, M. al-Kandari, and T. Sakkalis (2002), Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves,*Adv. Comp. Math.***17**, 369-383. MR**1916985 (2003e:65011)****9.**R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2008), Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures,*Comput. Aided Geom. Design***25**, 274-297. MR**2408092 (2009c:65020)****10.**R. T. Farouki, C. Giannelli, C. Manni, and A. Sestini (2009), Quintic space curves with rational rotation-minimizing frames,*Comput. Aided Geom. Design***26**, 580-592. MR**2526013 (2010c:65023)****11.**R. T. Farouki, C. Giannelli, and A. Sestini (2010), Geometric design using space curves with rational rotation-minimizing frames, in (M. Daehlen et al., eds.), Lecture Notes in Computer Science Vol. 5862, pp. 194-208, Springer.**12.**R. T. Farouki and C. Y. Han (2003), Rational approximation schemes for rotation-minimizing frames on Pythagorean-hodograph curves,*Comput. Aided Geom. Design***20**, 435-454. MR**2011551 (2004m:65025)****13.**R. T. Farouki, B. K. Kuspa, C. Manni, and A. Sestini (2001), Efficient solution of the complex quadratic tridiagonal system for PH quintic splines,*Numer. Algor.***27**, 35-60. MR**1847983 (2002e:65074)****14.**R. T. Farouki and C. A. Neff (1995), Hermite interpolation by Pythagorean-hodograph quintics,*Math. Comp.***64**, 1589-1609. MR**1308452 (95m:65025)****15.**R. T. Farouki and V. T. Rajan (1987), On the numerical condition of polynomials in Bernstein form,*Comput. Aided Geom. Design***4**, 191-216. MR**917780 (89a:65028)****16.**R. T. Farouki and T. Sakkalis (2010), Rational rotation-minimizing frames on polynomial space curves of arbitrary degree,*J. Symb. Comput.***45**, 844-856. MR**2657668****17.**C. Y. Han (2008), Nonexistence of rational rotation-minimizing frames on cubic curves,*Comput. Aided Geom. Design***25**, 298-304. MR**2408093 (2009a:65035)****18.**B. Jüttler (2001), Hermite interpolation by Pythagorean hodograph curves of degree seven,*Math. Comp.***70**, 1089-1111. MR**1826577 (2002c:65027)****19.**B. Jüttler and C. Mäurer (1999), Cubic Pythagorean hodograph spline curves and applications to sweep surface modelling,*Comput. Aided Design***31**, 73-83.**20.**B. Jüttler and C. Mäurer (1999), Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics,*J. Geom. Graphics***3**, 141-159. MR**1748024 (2001c:53007)****21.**F. Klok (1986), Two moving coordinate frames for sweeping along a 3D trajectory,*Comput. Aided Geom. Design***3**, 217-229. MR**871115 (88b:53001)****22.**E. Kreyszig (1959),*Differential Geometry*, University of Toronto Press. MR**0108795 (21:7507)****23.**J. Roe (1993),*Elementary Geometry*, Oxford University Press.**24.**Z. Sir and B. Jüttler (2007), Hermite interpolation by Pythagorean hodograph space curves,*Math. Comp.***76**, 1373-1391. MR**2299779 (2008f:65035)****25.**W. Wang and B. Joe (1997), Robust computation of the rotation minimizing frame for sweep surface modelling,*Comput. Aided Design***29**, 379-391.**26.**W. Wang, B. Jüttler, D. Zheng, Y. Liu (2008), Computation of rotation minimizing frames,*ACM Trans. Graphics***27**, No. 1, Article 2, 1-18.

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
65-XX,
53-XX

Retrieve articles in all journals with MSC (2010): 65-XX, 53-XX

Additional Information

**Rida T. Farouki**

Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616

Email:
farouki@ucdavis.edu

**Carlotta Giannelli**

Affiliation:
Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Viale Morgagni 65, 50134 Firenze, Italy

Email:
giannelli@dsi.unifi.it

**Carla Manni**

Affiliation:
Dipartimento di Matematica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica, 00133 Roma, Italy

Email:
manni@mat.uniroma2.it

**Alessandra Sestini**

Affiliation:
Dipartimento di Matematica “Ulisse Dini,” Università degli Studi di Firenze, Viale Morgagni 67a, 50134 Firenze, Italy

Email:
alessandra.sestini@unifi.it

DOI:
https://doi.org/10.1090/S0025-5718-2011-02519-6

Keywords:
Pythagorean–hodograph curves,
quaternions,
angular velocity,
Hermite interpolation,
rigid body motion,
rational rotation–minimizing frames.

Received by editor(s):
December 24, 2009

Received by editor(s) in revised form:
January 16, 2011

Published electronically:
July 8, 2011

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.