Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell's equations


Authors: S. C. Brenner, J. Cui, Z. Nan and L.-Y. Sung
Journal: Math. Comp. 81 (2012), 643-659
MSC (2010): Primary 65N30, 65N15, 35Q60
DOI: https://doi.org/10.1090/S0025-5718-2011-02540-8
Published electronically: August 30, 2011
MathSciNet review: 2869031
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We propose a new numerical approach for two-dimensional Maxwell's equations that is based on the Hodge decomposition for divergence-free vector fields. In this approach an approximate solution for Maxwell's equations can be obtained by solving standard second order scalar elliptic boundary value problems. This new approach is illustrated by a $ P_1$ finite element method.


References [Enhancements On Off] (What's this?)

  • 1. R.A. Adams and J.J.F. Fournier.
    Sobolev Spaces $ ($Second Edition$ )$.
    Academic Press, Amsterdam, 2003. MR 2424078 (2009e:46025)
  • 2. A. Alonso, P. Fernandes, and A. Valli.
    Weak and strong formulations for the time-harmonic eddy-current problem in general multi-connected domains.
    European J. Appl. Math., 14:387-406, 2003. MR 1999131 (2004i:78003)
  • 3. A. Alonso-Rodríguez, A. Valli, and R. Vázquez-Hernández.
    A formulation of the eddy current problem in the presence of electric ports.
    Numer. Math., 113:643-672, 2009. MR 2545497 (2010k:65251)
  • 4. C. Amrouche, C. Bernardi, M. Dauge, and V. Girault.
    Vector potentials in three-dimensional non-smooth domains.
    Math. Methods Appl. Sci., 21:823-864, 1998. MR 1626990 (99e:35037)
  • 5. F. Assous and M. Michaeli.
    Hodge decomposition to solve singular static Maxwell's equations in a non-convex polygon.
    Appl. Numer. Math., 60:432-441, 2010. MR 2607801 (2011c:65251)
  • 6. S.C. Brenner, F. Li, and L.-Y. Sung.
    A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations.
    Math. Comp., 76:573-595, 2007. MR 2291828 (2008c:65316)
  • 7. S.C. Brenner, F. Li, and L.-Y. Sung.
    A locally divergence-free interior penalty method for two dimensional curl-curl problems.
    SIAM J. Numer. Anal., 46:1190-1211, 2008. MR 2390990 (2009d:35321)
  • 8. S.C. Brenner, F. Li, and L.-Y. Sung.
    A nonconforming penalty method for a two dimensional curl-curl problem.
    M3AS, 19:651-668, 2009. MR 2514440 (2010h:65222)
  • 9. S.C. Brenner and L.R. Scott.
    The Mathematical Theory of Finite Element Methods $ ($Third Edition$ )$.
    Springer-Verlag, New York, 2008. MR 2373954 (2008m:65001)
  • 10. P. Ciarlet, Jr.
    Augmented formulations for solving Maxwell equations.
    Comput. Methods Appl. Mech. Engrg., 194:559-586, 2005. MR 2105182 (2005h:78026)
  • 11. P.G. Ciarlet.
    The Finite Element Method for Elliptic Problems.
    North-Holland, Amsterdam, 1978. MR 0520174 (58:25001)
  • 12. M. Costabel and M. Dauge.
    Maxwell and Lamé eigenvalues on polyhedra.
    Math. Methods Appl. Sci., 22:243-258, 1999. MR 1672271 (99k:78009)
  • 13. M. Dauge.
    Elliptic Boundary Value Problems on Corner Domains, Lecture Notes in Mathematics 1341.
    Springer-Verlag, Berlin-Heidelberg, 1988. MR 961439 (91a:35078)
  • 14. V. Girault and P.-A. Raviart.
    Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.
    Springer-Verlag, Berlin, 1986. MR 851383 (88b:65129)
  • 15. P. Grisvard.
    Elliptic Problems in Nonsmooth Domains.
    Pitman, Boston, 1985. MR 0775683 (86n:35044)
  • 16. R. Hiptmair.
    Finite elements in computational electromagnetism.
    Acta Numer., 11:237-339, 2002. MR 2009375 (2004k:78028)
  • 17. R. Hiptmair and J. Xu.
    Nodal auxiliary space preconditioning in $ {\bf H}({\bf curl})$ and $ {\bf H}({\rm div})$ spaces.
    SIAM J. Numer. Anal., 45:2483-2509 (electronic), 2007. MR 2361899 (2009g:65153)
  • 18. Q. Lin and J. Lin.
    Finite Element Methods: Accuracy and Improvement.
    Science Press, Beijing, 2006.
  • 19. P. Monk.
    Finite Element Methods for Maxwell's Equations.
    Oxford University Press, New York, 2003. MR 2059447 (2005d:65003)
  • 20. S.A. Nazarov and B.A. Plamenevsky.
    Elliptic Problems in Domains with Piecewise Smooth Boundaries.
    de Gruyter, Berlin-New York, 1994. MR 1283387 (95h:35001)
  • 21. J. Nečas.
    Les Méthodes Directes en Théorie des Équations Elliptiques.
    Masson, Paris, 1967. MR 0227584 (37:3168)
  • 22. J. E. Pasciak and J. Zhao.
    Overlapping Schwarz methods in $ H$(curl) on polyhedral domains.
    J. Numer. Math., 10:221-234, 2002. MR 1935967 (2003j:65108)
  • 23. A. Schatz.
    An observation concerning Ritz-Galerkin methods with indefinite bilinear forms.
    Math. Comp., 28:959-962, 1974. MR 0373326 (51:9526)
  • 24. L.B. Wahlbin.
    Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathematics 1605.
    Springer-Verlag, Berlin, 1995. MR 1439050 (98j:65083)
  • 25. C. Weber.
    A local compactness theorem for Maxwell's equations.
    Math. Meth. Appl. Sci., 2:12-25, 1980. MR 561375 (81f:78005)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 65N15, 35Q60

Retrieve articles in all journals with MSC (2010): 65N30, 65N15, 35Q60


Additional Information

S. C. Brenner
Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
Email: brenner@math.lsu.edu

J. Cui
Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
Address at time of publication: Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota 55455
Email: jcui@ima.umn.edu

Z. Nan
Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
Email: zhenan@math.lsu.edu

L.-Y. Sung
Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
Email: sung@math.lsu.edu

DOI: https://doi.org/10.1090/S0025-5718-2011-02540-8
Keywords: Maxwell’s equations, Hodge decomposition, finite element
Received by editor(s): January 11, 2010
Received by editor(s) in revised form: March 1, 2011
Published electronically: August 30, 2011
Additional Notes: This work was supported in part by the National Science Foundation under Grant Nos. DMS-07-13835 and DMS-10-16332, and by the Institute for Mathematics and its Applications with funds provided by the National Science Foundation.
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society