Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Explicit computations on the desingularized Kummer surface

Authors: V. G. Lopez Neumann and Constantin Manoil
Journal: Math. Comp. 81 (2012), 1149-1161
MSC (2010): Primary 14J28, 14M15; Secondary 14J50
Published electronically: September 30, 2011
MathSciNet review: 2869054
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We find formulas for the birational maps from a Kummer surface $ \mathcal {K}$ and its dual $ \mathcal {K}^*$ to their common minimal desingularization $ \mathcal {S}$. We show how the nodes of $ \mathcal {K}$ and $ \mathcal {K}^*$ blow up. Then we give a description of the group of linear automorphisms of $ \mathcal {S}$.

References [Enhancements On Off] (What's this?)

  • 1. A. Beauville, Surfaces algébriques complexes. Soc. Math. France, 1978. MR 0485887 (58:5686)
  • 2. P. Corn, Tate-Shafarevich Groups and $ K3$-Surfaces, Math. Comp. 79 (2010), 563-581. MR 2552241 (2011d:11139)
  • 3. J.W.S. Cassels and E.V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus $ 2$. London Math. Soc. Lecture Note Series 230, Cambridge, 1996. MR 1406090 (97i:11071)
  • 4. E.V. Flynn, The Jacobian and formal group of a curve of genus $ 2$ over an arbitrary ground field, Math. Proc. Cambridge Phil. Soc. 107 (1990), 425-441. MR 1041476 (91b:14025)
  • 5. Griffiths and Harris, Principles of Algebraic Geometry. John Wiley and Sons, New York, 1978. MR 507725 (80b:14001)
  • 6. R.W.H.T. Hudson, Kummer's Quartic Surface. Cambridge Univ. Press, 1990. MR 1097176 (92e:14033)
  • 7. A. Logan and R. van Luijk, Nontrivial elements of Sha explained through K3 surfaces, Math. Comp. 78 (2009), 441-483. MR 2448716 (2010a:14048)
  • 8. V.G. Lopez-Neumann and C. Manoil, Explicit computations on the desingularized Kummer surface, arXiv:0906.0790v1.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 14J28, 14M15, 14J50

Retrieve articles in all journals with MSC (2010): 14J28, 14M15, 14J50

Additional Information

V. G. Lopez Neumann
Affiliation: Faculdade de Matemática, Universidade Federal de Uberlândia, MG, Brazil

Constantin Manoil
Affiliation: Section de Mathématiques, Université de Genève, CP 64, 1211 Geneva 4, Switzerland
Address at time of publication: Collège Sismondi, 3 Chemin Rigot, 1202 Genève (Geneva), Switzerland

Keywords: Genus $2$ curves, Kummer surfaces, line complexes.
Received by editor(s): July 3, 2009
Published electronically: September 30, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society