Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Tractability index of hybrid equations for circuit simulation

Authors: Satoru Iwata, Mizuyo Takamatsu and Caren Tischendorf
Journal: Math. Comp. 81 (2012), 923-939
MSC (2010): Primary 34A09, 94C05; Secondary 65L80, 94C15
Published electronically: November 8, 2011
MathSciNet review: 2869043
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Modern modeling approaches for circuit simulation such as the modified nodal analysis (MNA) lead to differential-algebraic equations (DAEs). The index of a DAE is a measure of the degree of numerical difficulty. In general, the higher the index is, the more difficult it is to solve the DAE.

In this paper, we consider a broader class of analysis methods called the hybrid analysis. For nonlinear time-varying circuits with general dependent sources, we give a structural characterization of the tractability index of DAEs arising from the hybrid analysis. This enables us to determine the tractability index efficiently, which helps to avoid solving higher index DAEs in circuit simulation.

References [Enhancements On Off] (What's this?)

  • 1. S. Amari, Topological foundations of Kron's tearing of electric networks, RAAG Memoirs 3 (1962), 322-350.
  • 2. K. Balla and R. März, A unified approach to linear differential algebraic equations and their adjoint equations, Zeitschrift für Analysis und ihre Anwendungen 21 (2002), 783-802. MR 1929432 (2003g:34002)
  • 3. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, Springer-Verlag, New York, 2003, 2nd edition. MR 1987382 (2004b:15008)
  • 4. F. H. Branin, The relation between Kron's method and the classical methods of network analysis, The Matrix and Tensor Quarterly 12 (1962), 69-115.
  • 5. K. E. Brenan, S. L. Campbell, and L. R. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996, 2nd edition. MR 1363258 (96h:65083)
  • 6. P. R. Bryant, The order of complexity of electrical networks, Proceedings of the Institution of Electrical Engineers, Part C 106 (1959), 174-188.
  • 7. S. L. Campbell and C. W. Gear, The index of general nonlinear DAEs, Numerische Mathematik 72 (1995), 173-196. MR 1362259 (96i:34008)
  • 8. L. O. Chua, Dynamic nonlinear networks: state-of-the-art, IEEE Transactions on Circuits and Systems 27 (1980), 1059-1087. MR 594151 (82j:94024)
  • 9. D. Estévez Schwarz and C. Tischendorf, Structural analysis of electric circuits and consequences for MNA, International Journal of Circuit Theory and Applications 28 (2000), 131-162.
  • 10. W. Fischer, Equivalent circuit and gain of MOS field effect transistors, Solid-State Electronics 9 (1966), 71-81.
  • 11. E. Griepentrog and R. März, Differential-Algebraic Equations and Their Numerical Treatment, Teubner, Leipzig, 1986. MR 881052 (88e:65105)
  • 12. M. Günther and P. Rentrop, The differential-algebraic index concept in electric circuit simulation, Zeitschrift für angewandte Mathematik und Mechanik 76, supplement 1 (1996), 91-94.
  • 13. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Springer-Verlag, Berlin, 1996, 2nd edition. MR 1439506 (97m:65007)
  • 14. I. Higueras, R. März, and C. Tischendorf, Stability preserving integration of index-1 DAEs, Applied Numerical Mathematics 45 (2003), 175-200. MR 1967573 (2004b:34008)
  • 15. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. MR 832183 (87e:15001)
  • 16. M. Iri, A min-max theorem for the ranks and term-ranks of a class of matrices: An algebraic approach to the problem of the topological degrees of freedom of a network (in Japanese), Transactions of the Institute of Electronics and Communication Engineers of Japan 51A (1968), 180-187. MR 0258849 (41:3495a)
  • 17. -, Applications of matroid theory, Mathematical Programming -- The State of the Art, Springer-Verlag, Berlin, 1983, pp. 158-201. MR 717401 (85a:05022)
  • 18. S. Iwata and M. Takamatsu, Index minimization of differential-algebraic equations in hybrid analysis for circuit simulation, Mathematical Programming 121 (2010), 105-121. MR 2520408 (2010j:65107)
  • 19. S. Iwata, M. Takamatsu, and C. Tischendorf, Hybrid analysis of nonlinear time-varying circuits providing DAEs with index at most one, Scientific Computing in Electrical Engineering SCEE 2008 (J. Roos and L. R. J. Costa, eds.), Mathematics in Industry, vol. 14, Springer, 2010, pp. 151-158.
  • 20. G. Kishi and Y. Kajitani, Maximally distinct trees in a linear graph (in Japanese), Transactions of the Institute of Electronics and Communication Engineers of Japan 51A (1968), 196-203. MR 0252270 (40:5491)
  • 21. G. Kron, Tensor Analysis of Networks, John Wiley and Sons, New York, 1939.
  • 22. P. Kunkel and V. Mehrmann, Canonical forms for linear differential-algebraic equations with variable coefficients, Journal of Computational and Applied Mathematics 56 (1994), 225-251. MR 1335565 (96m:34005)
  • 23. -, Index reduction for differential-algebraic equations by minimal extension, Zeitschrift für angewandte Mathematik und Mechanik 84 (2004), 579-597. MR 2083283 (2005d:34008)
  • 24. R. März, Numerical methods for differential-algebraic equations, Acta Numerica 1 (1992), 141-198. MR 1165725 (93e:65096)
  • 25. -, Nonlinear differential-algebraic equations with properly formulated leading term, Tech. Report 01-3, Department of Mathematics, Humboldt-Universität zu Berlin, 2001,
  • 26. -, The index of linear differential algebraic equations with properly stated leading term, Results in Mathematics 42 (2002), 308-338. MR 1946748 (2003i:34004)
  • 27. R. März and R. Riaza, Linear differential-algebraic equations with properly stated leading term: Regular points, Journal of Mathematical Analysis and Applications 323 (2006), 1279-1299. MR 2260180 (2007f:34009)
  • 28. S. E. Mattsson and G. Söderlind, Index reduction in differential-algebraic equations using dummy derivatives, SIAM Journal on Scientific Computing 14 (1993), 677-692. MR 1214776 (93m:65094)
  • 29. H. Narayanan, Submodular Functions and Electrical Networks, North-Holland Publ., Amsterdam, 1997. MR 1453578 (98g:94053)
  • 30. T. Ohtsuki, Y. Ishizaki, and H. Watanabe, Network analysis and topological degrees of freedom (in Japanese), Transactions of the Institute of Electronics and Communication Engineers of Japan 51A (1968), 238-245. MR 0265068 (41:9655)
  • 31. J. M. Rabaey, The spice page,
  • 32. A. Recski, Matroid Theory and Its Applications in Electric Network Theory and in Statics, Springer-Verlag, Berlin, 1989.
  • 33. G. Reißig, The index of the standard circuit equations of passive RLCTG-networks does not exceed 2, Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (ISCAS '98) 3 (1998), 419-422.
  • 34. -, Extension of the normal tree method, International Journal of Circuit Theory and Applications 27 (1999), 241-265.
  • 35. W. C. Rheinboldt, Differential-algebraic systems as differential equations on manifolds, Mathematics of Computation 43 (1984), 473-482. MR 758195 (86c:58131)
  • 36. R. Riaza, Differential-Algebraic Systems: Analytical Aspects and Circuit Applications, World Scientific Publishing Company, Singapore, 2008. MR 2426820 (2009e:34003)
  • 37. R. Riaza and R. März, Linear index-1 DAEs: Regular and singular problems, Acta Applicandae Mathematicae 84 (2004), 29-53. MR 2104183 (2005k:34010)
  • 38. M. Takamatsu and S. Iwata, Index characterization of differential-algebraic equations in hybrid analysis for circuit simulation, International Journal of Circuit Theory and Applications 38 (2010), 419-440.
  • 39. C. Tischendorf, Topological index calculation of differential-algebraic equations in circuit simulation, Surveys on Mathematics for Industry 8 (1999), 187-199. MR 1737412 (2000i:94093)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 34A09, 94C05, 65L80, 94C15

Retrieve articles in all journals with MSC (2010): 34A09, 94C05, 65L80, 94C15

Additional Information

Satoru Iwata
Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Mizuyo Takamatsu
Affiliation: Department of Information and System Engineering, Chuo University, Tokyo 112-8551, Japan

Caren Tischendorf
Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Köln, Germany

Keywords: Differential-algebraic equations, index, circuit simulation, hybrid analysis
Received by editor(s): May 18, 2010
Received by editor(s) in revised form: February 23, 2011
Published electronically: November 8, 2011
Additional Notes: The first author was supported by a Grant-in-Aid for Scientific Research from the Japan Society for Promotion of Science.
The second author was supported by a Grant-in-Aid for Scientific Research from the Japan Society for Promotion of Science.
The third author was supported by the European Union within the framework of the project “Integrated Circuit/EM Simulation and design Technologies for Advanced Radio Systems-on-chip” (FP7/2008/ICT/214911).
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society