Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Reviews of books in areas related to computational mathematics are also included.

Submission information. See Information for Authors at the end of this issue.

Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval.

Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published quarterly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 81 (2012) are as follows: for paper delivery, US$577 list, US$461.60 institutional member, US$519.30 corporate member; US$346.20 individual member; for electronic delivery, US$508 list, US$406.40 institutional member, US$457.20 corporate member, US$304.80 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$30 for surface delivery outside the United States and India; US$43 to India. Expedited delivery to destinations in North America is US$35; elsewhere US$77. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/bookstore.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

Mathematics of Computation (ISSN 0025-5718) is published quarterly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2294 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

© 2012 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index™—Expanded, ISI Alerting Services®, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.

10 9 8 7 6 5 4 3 2 1 17 16 15 14 13 12
MATHEMATICS OF COMPUTATION
CONTENTS

Vol. 81, No. 278 April 2012

Liuqiang Zhong, Long Chen, Shi Shu, Gabriel Wittum, and Jinchao Xu, Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations .. 623

Sebastian Franz, R. Bruce Kellogg, and Martin Stynes, Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities 661

Assyr Abdulle, Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales 687

Cui Yanfen and Mao De-kang, Error self-canceling of a difference scheme maintaining two conservation laws for linear advection equation 715

A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the W_{∞}^{1} norm for finite element methods on graded meshes .. 743

Alexey Chernov, Optimal convergence estimates for the trace of the polynomial L^2-projection operator on a simplex 765

Albert Cohen, Nira Dyn, Frédéric Hecht, and Jean-Marie Mirebeau, Adaptive multiresolution analysis based on anisotropic triangulations 789

Jean-Marie Mirebeau and Albert Cohen, Greedy bisection generates optimally adapted triangulations .. 811

Habib Ammari, Hyeonbae Kang, Eunjoo Kim, and June-Yub Lee, The generalized polarization tensors for resolved imaging Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements ... 839

Haiyong Wang and Shuhuang Xiang, On the convergence rates of Legendre approximation ... 861

Rida T. Farouki, Carlotta Giannelli, Carla Manni, and Alessandra Sestini, Design of rational rotation–minimizing rigid body motions by Hermite interpolation ... 879

Jeffrey D. Blanchard and Ilya A. Krishtal, Matricial filters and crystallographic composite dilation wavelets .. 905

Satoru Iwata, Mizuyo Takamatsu, and Caren Tischendorf, Tractability index of hybrid equations for circuit simulation 923

Palle E. T. Jorgensen, Ergodic scales in fractal measures 941

Toshio Fukushima, Series expansions of symmetric elliptic integrals 957

Iván Area, Dimitar K. Dimitrov, Eduardo Godoy, and Fernando R. Rafaeli, Inequalities for zeros of Jacobi polynomials via Obrechkoff’s theorem ... 991

William Y. C. Chen, Neil J. Y. Fan, and Jeffrey Y. T. Jia, The generating function for the Dirichlet series $L_m(s)$ 1005

D. Berkane, O. Bordellès, and O. Ramaré, Explicit upper bounds for the remainder term in the divisor problem 1025
Timothy Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line 1053
Wolfgang Keller, Jacques Martinet, and Achill Schürmann, with an Appendix by Mathieu Dutour Sikirić, On classifying Minkowskian sublattices .. 1063
Jorge Jiménez Urroz, Florian Luca, and Igor E. Shparlinski, On the number of isogeny classes of pairing-friendly elliptic curves and statistics of MNT curves .. 1093
Bas Heijne, The maximal rank of elliptic Delsarte surfaces 1111
Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion .. 1131
V. G. Lopez Neumann and Constantin Manoil, Explicit computations on the desingularized Kummer surface 1149
Amir Hashemi, Efficient computation of Castelnuovo-Mumford regularity 1163
David Loeffler and Jared Weinstein, On the computation of local components of a newform ... 1179
Reinier Bröker, Kristin Lauter, and Andrew V. Sutherland, Modular polynomials via isogeny volcanoes .. 1201
Terence Tao, Ernest Croot III, and Harald Helfgott, Deterministic methods to find primes ... 1233
Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \texttt{AMS-L\TeX}. To this end, the Society has prepared \texttt{AMS-L\TeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-L\TeX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \texttt{\TeX}, using \texttt{AMS-L\TeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-L\TeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-L\TeX} is the highly preferred format of \texttt{\TeX}, but author packages are also available in \texttt{AMS-\TeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{\TeX} or plain \texttt{\TeX} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \texttt{\TeX} users will find that \texttt{AMS-L\TeX} is the same as \texttt{\TeX} with additional
commands to simplify the typesetting of mathematics, and users of plain \TeX should have
the foundation for learning \LaTeX.

Authors may retrieve an author package for Mathematics of Computation from
www.ams.org/mcom/mcomauthorpac.html or via FTP to ftp.ams.org (login as anonymous,
enter your complete email address as password, and type \texttt{cd pub/author-info}). The
AMS Author Handbook and the Instruction Manual are available in PDF format from the
author package link. The author package can also be obtained free of charge by sending
email to tech-support@ams.org or from the Publication Division, American Mathematical
Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author
package, please specify \LaTeX or \LaTeXe and the publication in which your paper
will appear. Please be sure to include your complete email address.

\textbf{After acceptance.} The source files for the final version of the electronic manuscript
should be sent to the Providence office immediately after the paper has been accepted for
publication. The author should also submit a PDF of the final version of the paper to the
Managing Editor, who will forward a copy to the Providence office. Accepted electronically
prepared manuscripts can be submitted via the web at www.ams.org/submit-book-
journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Pre-
press Department, American Mathematical Society, 201 Charles Street, Providence, RI
02904-2294 USA. When sending a manuscript electronically via email or CD, please be
sure to include a message indicating in which publication the paper has been accepted.
No corrections will be accepted electronically. Authors must mark their changes on their
proof copies and return them to the Providence office. Complete instructions on how to
send files are included in the author package.

\textbf{Electronic graphics.} Comprehensive instructions on preparing graphics are available
starting from www.ams.org/authors/journals.html. A few of the major requirements
are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics
originated via a graphics application as well as scanned photographs or other computer-
generated images. If this is not possible, TIFF files are acceptable as long as they can be
opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the
use of any lines thinner than 0.5 points in width. Many graphics packages allow the user
to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed
on a typical laser printer. However, when produced on a high-resolution laser imagesetter,
hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15\% and 85\%. Screens which fall outside of this
range are too light or too dark to print correctly. Variations of screens within a graphic
should be no less than 10\%.

\textbf{AMS policy on making changes to articles after posting.} Articles are posted to
the AMS website individually after proof is returned from authors and before appearing
in an issue. To preserve the integrity of electronically published articles, once an article is
individually posted to the AMS website but not yet in an issue, changes cannot be made
in place in the paper. However, an “Added after posting” section may be added to the
paper right before the References when there is a critical error in the content of the paper.
The “Added after posting” section gives the author an opportunity to correct this type
of critical error before the article is put into an issue for printing and before it is then
reposted with the issue. The “Added after posting” section remains a permanent part of
the paper. The AMS does not keep author-related information, such as affiliation, current
address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the
AMS website, corrections may be made to the paper by submitting a traditional errata
article. The errata article will appear in a future print issue and will link back and forth
on the web to the original article online.
Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Chair. Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: mathcomp@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; E-mail: igor.shparlinski@mq.edu.au

CHI-WANG SHU, Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

REMI ABGRALL, INRIA & Institut Polytechnique de Bordeaux, Team Bacchus and Institut de Mathématiques de Bordeaux, Bat A29 bis, 351 cours de la Libération, 33 405 Talence, Cedex France; E-mail: abgrall@math.u-bordeaux.fr

DANIELA CALVETTI, Department of Mathematics, Case Western Reserve University, Yost Hall, 10900 Euclid Avenue., Cleveland, OH 44106 USA; E-mail: daniela.calvetti@case.edu

ZHIMING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@lsec.cc.ac.cn

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduran@dmm.uba.ar

VIVETTE GIRAULT, Laboratoire Jacques-Louis Lions, Boîte courrier 187, Université de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; E-mail: girault@ann.jussieu.fr

DOUGLAS HARDIN, Vanderbilt University, Department of Mathematics, 1326 Stevenson Center, Nashville, TN 37240 USA; E-mail: doug.hardin@vanderbilt.edu

FRED J. HICKERNELL, Department of Applied Mathematics, Illinois Institute of Technology, E1 Building, Room 208, 10 W. 32nd Street, Chicago, IL 60616-3793 USA; E-mail: hickernell@iit.edu

GREGOR KEMPER, Technische Universität München, Zentrum Mathematik M 11, Boltzmannstr 3, 85748 Garching, Germany; E-mail: kemper@ma.tum.de

BORIS N. KHOROMSKIJ, Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany; E-mail: bokh@mis.mpg.de

CHRISTIAN LUBICH, Universität Tübingen, Mathematik, Auf der Morgenstelle 10, 72076 Tübingen, Germany; E-mail: lubich@na.uni-tuebingen.de

GUNTER MALLE, Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany; E-mail: malle@mathematik.uni-kl.de

MICHAEL J. MOSSINGHOFF, Department of Mathematics, Davidson College, Davidson, NC 28035-6996 USA; E-mail: mimossinghoff@davidson.edu

STANLEY Osher, Department of Mathematics, University of California, P.O. Box 95155, Los Angeles, CA 90095-1555 USA; E-mail: sjo@math.ucla.edu
William Y. C. Chen, Neil J. Y. Fan, and Jeffrey Y. T. Jia, The generating function for the Dirichlet series $L_m(s)$.. 1005
D. Berkane, O. Bordellès, and O. Ramaré, Explicit upper bounds for the remainder term in the divisor problem 1025
Timothy Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line .. 1053
Wolfgang Keller, Jacques Martinet, and Achill Schürmann, with an Appendix by Mathieu Dutour Sikirić, On classifying Minkowskian sublattices .. 1063
Jorge Jiménez Urroz, Florian Luca, and Igor E. Shparlinski, On the number of isogeny classes of pairing-friendly elliptic curves and statistics of MNT curves ... 1093
Bas Heijne, The maximal rank of elliptic Delsarte surfaces 1111
Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion .. 1131
V. G. Lopez Neumann and Constantin Manoil, Explicit computations on the desingularized Kummer surface 1149
Amir Hashemi, Efficient computation of Castelnuovo-Mumford regularity .. 1163
David Loeffler and Jared Weinstein, On the computation of local components of a newform ... 1179
Reinier Bröker, Kristin Lauter, and Andrew V. Sutherland, Modular polynomials via isogeny volcanoes .. 1201
Terence Tao, Ernest Croot III, and Harald Helfgott, Deterministic methods to find primes .. 1233
Liuqiang Zhong, Long Chen, Shi Shu, Gabriel Wittum, and Jinchao Xu, Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations .. 623
Sebastian Franz, R. Bruce Kellogg, and Martin Stynes, Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities 661
Assyr Abdulle, Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales 687
Cui Yanfen and Mao De-kang, Error self-canceling of a difference scheme maintaining two conservation laws for linear advection equation 715
A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the W_2^2 norm for finite element methods on graded meshes ... 743
Alexey Chernov, Optimal convergence estimates for the trace of the polynomial L^2-projection operator on a simplex 765
Albert Cohen, Nira Dyn, Frédéric Hecht, and Jean-Marie Mirebeau, Adaptive multiresolution analysis based on anisotropic triangulations 789
Jean-Marie Mirebeau and Albert Cohen, Greedy bisection generates optimally adapted triangulations ... 811
Habib Ammari, Hyeonbae Kang, Eunjoo Kim, and June-Yub Lee, The generalized polarization tensors for resolved imaging Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements .. 839
Haiyong Wang and Shuhuang Xiang, On the convergence rates of Legendre approximation .. 861
Rida T. Farouki, Carlotta Giannelli, Carla Manni, and Alessandra Sestini, Design of rational rotation–minimizing rigid body motions by Hermite interpolation .. 879
Jeffrey D. Blanchard and Ilya A. Krishtal, Matricial filters and crystallographic composite dilation wavelets .. 905
Satoru Iwata, Mizuyo Takamatsu, and Caren Tischendorf, Tractability index of hybrid equations for circuit simulation 923
Palle E. T. Jorgensen, Ergodic scales in fractal measures 941
Toshio Fukushima, Series expansions of symmetric elliptic integrals 957
Iván Area, Dimitar K. Dimitrov, Eduardo Godoy, and Fernando R. Rafaeli, Inequalities for zeros of Jacobi polynomials via Obrechkoff’s theorem .. 991

(Continued on inside back cover)