Polynomial extension operators. Part III

Authors:
L. Demkowicz, J. Gopalakrishnan and J. Schöberl

Journal:
Math. Comp. **81** (2012), 1289-1326

MSC (2010):
Primary 46E35, 46E40; Secondary 41A10, 65D05, 65L60

DOI:
https://doi.org/10.1090/S0025-5718-2011-02536-6

Published electronically:
September 20, 2011

MathSciNet review:
2904580

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this concluding part of a series of papers on tetrahedral polynomial extension operators, the existence of a polynomial extension operator in the Sobolev space is proven constructively. Specifically, on any tetrahedron , given a function on the boundary that is a polynomial on each face, the extension operator applied to gives a vector function whose components are polynomials of at most the same degree in the tetrahedron. The vector function is an extension in the sense that the trace of its normal component on the boundary coincides with . Furthermore, the extension operator is continuous from into . The main application of this result and the results of this series of papers is the existence of commuting projectors with good -approximation properties.

**1.**Mark Ainsworth and Leszek Demkowicz,*Explicit polynomial preserving trace liftings on a triangle*, Math. Nachr.**282**(2009), no. 5, 640–658. MR**2523203**, https://doi.org/10.1002/mana.200610762**2.**I. Babuška and Manil Suri,*The ℎ-𝑝 version of the finite element method with quasi-uniform meshes*, RAIRO Modél. Math. Anal. Numér.**21**(1987), no. 2, 199–238 (English, with French summary). MR**896241****3.**William M. Boothby,*An introduction to differentiable manifolds and Riemannian geometry*, 2nd ed., Pure and Applied Mathematics, vol. 120, Academic Press, Inc., Orlando, FL, 1986. MR**861409****4.**Franco Brezzi, Jim Douglas Jr., and L. D. Marini,*Two families of mixed finite elements for second order elliptic problems*, Numer. Math.**47**(1985), no. 2, 217–235. MR**799685**, https://doi.org/10.1007/BF01389710**5.**A. Buffa and P. Ciarlet Jr.,*On traces for functional spaces related to Maxwell’s equations. I. An integration by parts formula in Lipschitz polyhedra*, Math. Methods Appl. Sci.**24**(2001), no. 1, 9–30. MR**1809491**, https://doi.org/10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2**6.**Michel Cessenat,*Mathematical methods in electromagnetism*, Series on Advances in Mathematics for Applied Sciences, vol. 41, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. Linear theory and applications. MR**1409140****7.**M. Costabel, M. Dauge, and L. Demkowicz,*Polynomial extension operators for 𝐻¹, 𝐻(𝑐𝑢𝑟𝑙) and 𝐻(𝑑𝑖𝑣)-spaces on a cube*, Math. Comp.**77**(2008), no. 264, 1967–1999. MR**2429871**, https://doi.org/10.1090/S0025-5718-08-02108-X**8.**Daniele Boffi, Franco Brezzi, Leszek F. Demkowicz, Ricardo G. Durán, Richard S. Falk, and Michel Fortin,*Mixed finite elements, compatibility conditions, and applications*, Lecture Notes in Mathematics, vol. 1939, Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008. Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006; Edited by Boffi and Lucia Gastaldi. MR**2459075****9.**L. Demkowicz and I. Babuška,*𝑝 interpolation error estimates for edge finite elements of variable order in two dimensions*, SIAM J. Numer. Anal.**41**(2003), no. 4, 1195–1208. MR**2034876**, https://doi.org/10.1137/S0036142901387932**10.**L. Demkowicz and A. Buffa,*𝐻¹, 𝐻(𝑐𝑢𝑟𝑙) and 𝐻(𝑑𝑖𝑣)-conforming projection-based interpolation in three dimensions. Quasi-optimal 𝑝-interpolation estimates*, Comput. Methods Appl. Mech. Engrg.**194**(2005), no. 2-5, 267–296. MR**2105164**, https://doi.org/10.1016/j.cma.2004.07.007**11.**Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl,*Polynomial extension operators. I*, SIAM J. Numer. Anal.**46**(2008), no. 6, 3006–3031. MR**2439500**, https://doi.org/10.1137/070698786**12.**Leszek Demkowicz, Jayadeep Gopalakrishnan, and Joachim Schöberl,*Polynomial extension operators. II*, SIAM J. Numer. Anal.**47**(2009), no. 5, 3293–3324. MR**2551195**, https://doi.org/10.1137/070698798**13.**Vivette Girault and Pierre-Arnaud Raviart,*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383****14.**Jayadeep Gopalakrishnan and Leszek F. Demkowicz,*Quasioptimality of some spectral mixed methods*, J. Comput. Appl. Math.**167**(2004), no. 1, 163–182. MR**2059719**, https://doi.org/10.1016/j.cam.2003.10.001**15.**Benqi Guo and Jianming Zhang,*Stable and compatible polynomial extensions in three dimensions and applications to the 𝑝 and ℎ-𝑝 finite element method*, SIAM J. Numer. Anal.**47**(2009), no. 2, 1195–1225. MR**2485450**, https://doi.org/10.1137/070688006**16.**M. R. Hestenes,*Extension of the range of a differentiable function*, Duke Math. J.**8**(1941), 183–192. MR**0003434****17.**R. Hiptmair,*Canonical construction of finite elements*, Math. Comp.**68**(1999), no. 228, 1325–1346. MR**1665954**, https://doi.org/10.1090/S0025-5718-99-01166-7**18.**Peter Monk,*Finite element methods for Maxwell’s equations*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR**2059447****19.**Rafael Muñoz-Sola,*Polynomial liftings on a tetrahedron and applications to the ℎ-𝑝 version of the finite element method in three dimensions*, SIAM J. Numer. Anal.**34**(1997), no. 1, 282–314. MR**1445738**, https://doi.org/10.1137/S0036142994267552**20.**P.-A. Raviart and J. M. Thomas,*Primal hybrid finite element methods for 2nd order elliptic equations*, Math. Comp.**31**(1977), no. 138, 391–413. MR**0431752**, https://doi.org/10.1090/S0025-5718-1977-0431752-8**21.**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095**

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
46E35,
46E40,
41A10,
65D05,
65L60

Retrieve articles in all journals with MSC (2010): 46E35, 46E40, 41A10, 65D05, 65L60

Additional Information

**L. Demkowicz**

Affiliation:
Institute of Computational Engineering and Sciences, 1 University Station, C0200, The University of Texas at Austin, Texas 78712

Email:
leszek@ices.utexas.edu

**J. Gopalakrishnan**

Affiliation:
University of Florida, Department of Mathematics, Gainesville, Florida 32611–8105

Email:
jayg@ufl.edu

**J. Schöberl**

Affiliation:
Technische Universität Wein, Wiedner Hauptstrasse 8-10, Wein 1040, Austria

Email:
joachim.schoeberl@tuwien.ac.at

DOI:
https://doi.org/10.1090/S0025-5718-2011-02536-6

Received by editor(s):
January 3, 2010

Received by editor(s) in revised form:
February 23, 2011

Published electronically:
September 20, 2011

Additional Notes:
This work was supported in part by the National Science Foundation under grants DMS-1014817, the Johann Radon Institute for Computational and Applied Mathematics (RICAM), and the FWF-Start-Project Y-192 “hp-FEM”

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.