Combinatorics of Cremona monomial maps
Authors:
Aron Simis and Rafael H. Villarreal
Journal:
Math. Comp. 81 (2012), 18571867
MSC (2010):
Primary 14E05, 14E07, 15A51, 15A36
Published electronically:
October 24, 2011
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study Cremona monomial maps using linear algebra, lattice theory and linear optimization methods. Among the results is a simple integer matrix theoretic proof that the inverse of a Cremona monomial map is also defined by monomials of fixed degree, and moreover, the set of monomials defining the inverse can be obtained explicitly in terms of the initial data. We present another method to compute the inverse of a Cremona monomial map based on integer programming techniques and the notion of a Hilbert basis. A neat consequence is drawn for the plane Cremona monomial group, in particular, the known result saying that a plane Cremona monomial map and its inverse have the same degree.
 1.
Maria
AlberichCarramiñana, Geometry of the plane Cremona
maps, Lecture Notes in Mathematics, vol. 1769, SpringerVerlag,
Berlin, 2002. MR
1874328 (2002m:14008)
 2.
W.
G. Bridges and H.
J. Ryser, Combinatorial designs and related systems, J.
Algebra 13 (1969), 432–446. MR 0245456
(39 #6764)
 3.
W. Bruns and B. Ichim, NORMALIZ 2.0, Computing normalizations of affine semigroups 2008. Available from http://www.math.uos.de/normaliz.
 4.
Gérard
Cornuéjols, Combinatorial optimization, CBMSNSF
Regional Conference Series in Applied Mathematics, vol. 74, Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.
Packing and covering. MR 1828452
(2002e:90004)
 5.
B. Costa and A. Simis, Cremona maps defined by monomials. J. Pure Appl. Algebra, In Press, DOI:10.1016/j.jpaa.2011.06.007, 2011, arXiv:1101.2413.
 6.
Gérard
GonzalezSprinberg and Ivan
Pan, On the monomial birational maps of the projective space,
An. Acad. Brasil. Ciênc. 75 (2003), no. 2,
129–134 (English, with English and Portuguese summaries). MR 1984551
(2004e:14026), http://dx.doi.org/10.1590/S000137652003000200001
 7.
Anatoly
B. Korchagin, On birational monomial transformations of plane,
Int. J. Math. Math. Sci. 2932 (2004), 1671–1677. MR 2085087
(2005f:14030), http://dx.doi.org/10.1155/S0161171204306514
 8.
Alexander
Schrijver, Theory of linear and integer programming,
WileyInterscience Series in Discrete Mathematics, John Wiley & Sons,
Ltd., Chichester, 1986. A WileyInterscience Publication. MR 874114
(88m:90090)
 9.
Aron
Simis, Cremona transformations and some related algebras, J.
Algebra 280 (2004), no. 1, 162–179. MR 2081926
(2005e:14020), http://dx.doi.org/10.1016/j.jalgebra.2004.03.025
 10.
Aron
Simis and Rafael
H. Villarreal, Constraints for the normality of
monomial subrings and birationality, Proc.
Amer. Math. Soc. 131 (2003), no. 7, 2043–2048 (electronic). MR 1963748
(2003k:13011), http://dx.doi.org/10.1090/S0002993902067904
 11.
Aron
Simis and Rafael
H. Villarreal, Linear syzygies and birational combinatorics,
Results Math. 48 (2005), no. 34, 326–343. MR 2215584
(2007a:14020), http://dx.doi.org/10.1007/BF03323372
 1.
 M. AlberichCarramiñana, Geometry of the Plane Cremona Maps, Lecture Notes in Mathematics, vol. 1769, 2002, SpringerVerlag, BerlinHeidelberg. MR 1874328 (2002m:14008)
 2.
 W. G. Bridges and H. J. Ryser, Combinatorial designs and related systems, J. Algebra 13 (1969), 432446. MR 0245456 (39:6764)
 3.
 W. Bruns and B. Ichim, NORMALIZ 2.0, Computing normalizations of affine semigroups 2008. Available from http://www.math.uos.de/normaliz.
 4.
 G. Cornuéjols, Combinatorial optimization: Packing and covering, CBMSNSF Regional Conference Series in Applied Mathematics 74, SIAM (2001). MR 1828452 (2002e:90004)
 5.
 B. Costa and A. Simis, Cremona maps defined by monomials. J. Pure Appl. Algebra, In Press, DOI:10.1016/j.jpaa.2011.06.007, 2011, arXiv:1101.2413.
 6.
 G. GonzalezSprinberg and I. Pan, On the monomial birational maps of the projective space, An. Acad. Brasil. Ci nc. 75 (2003), no. 2, 129134. MR 1984551 (2004e:14026)
 7.
 A. B. Korchagin, On birational monomial transformations of plane, Int. J. Math. Math. Sci. 32 (2004), 16711677. MR 2085087 (2005f:14030)
 8.
 A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, New York, 1986. MR 874114 (88m:90090)
 9.
 A. Simis, Cremona transformations and some related algebras, J. Algebra 280 (2004), no. 1, 162179. MR 2081926 (2005e:14020)
 10.
 A. Simis and R. H. Villarreal, Constraints for the normality of monomial subrings and birationality, Proc. Amer. Math. Soc. 131 (2003), no. 7, 20432048. MR 1963748 (2003k:13011)
 11.
 A. Simis and R. H. Villarreal, Linear syzygies and birational combinatorics, Results Math. 48 (2005), no. 34, 326343. MR 2215584 (2007a:14020)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC (2010):
14E05,
14E07,
15A51,
15A36
Retrieve articles in all journals
with MSC (2010):
14E05,
14E07,
15A51,
15A36
Additional Information
Aron Simis
Affiliation:
Departamento de Matemática, Universidade Federal de Pernambuco, 50740540 Recife, Pe, Brazil
Email:
aron@dmat.ufpe.br
Rafael H. Villarreal
Affiliation:
Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14–740, 07000 Mexico City, D.F.
Email:
vila@math.cinvestav.mx
DOI:
http://dx.doi.org/10.1090/S002557182011025561
PII:
S 00255718(2011)025561
Received by editor(s):
September 1, 2009
Received by editor(s) in revised form:
April 5, 2011
Published electronically:
October 24, 2011
Additional Notes:
The first author was partially supported by a grant of CNPq. He warmly thanks CINVESTAV for support during a visit. The second author was partially supported by CONACyT grant 49251F and SNI
Article copyright:
© Copyright 2011
American Mathematical Society
