Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Gram lines and the average of the real part of the Riemann zeta function


Authors: Kevin A. Broughan and A. Ross Barnett
Journal: Math. Comp. 81 (2012), 1669-1679
MSC (2010): Primary 11M06
DOI: https://doi.org/10.1090/S0025-5718-2011-02565-2
Published electronically: December 7, 2011
MathSciNet review: 2904597
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The contours $ \Im \Lambda (s)=0$ of the function which satisfies
$ \zeta (1-s)=\Lambda (s)\zeta (s)$ cross the critical strip on lines which are almost horizontal and straight, and which cut the critical line alternately at Gram points and points where $ \zeta (s)$ is imaginary. When suitably averaged the real part of $ \zeta (s)$ satisfies a relation which greatly extends a theorem of Titchmarsh, (namely that the average of $ \zeta (s)$ over the Gram points has the value 2), to the open right-hand half plane $ \sigma >0$.


References [Enhancements On Off] (What's this?)

  • 1. R. Backlund, Sur les zéros de la fonction $ \zeta (s)$ de Riemann, C. R. Acad. Sci. Paris, 158 (1914), 1979-1982.
  • 2. R. P. Brent, J. van de Lune, H. J. J. Riele and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. II, Math. Comp. 39 (1982), 681-688. MR 669660 (83m:10067)
  • 3. K. A. Broughan, Holomorphic flows on simply connected domains have no limit cycle, Meccanica 38(6) (2003), 699-709. MR 2028269 (2004m:37092)
  • 4. H. M. Edwards, Riemann's zeta function, Dover, 2001. MR 1854455 (2002g:11129)
  • 5. J. -P. Gram, Sur les zéros de la fonction $ \zeta (s)$ de Riemann, Acta Math. 27, (1903), 289-304. MR 1554986
  • 6. J. I. Hutchinson, On the roots of the Riemann zeta-function, Trans. Amer. Math. Soc. 27 (1925), 49-60. MR 1501297
  • 7. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society, 2004. MR 2061214 (2005h:11005)
  • 8. D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291-298. MR 0086082 (19:121a)
  • 9. J. B. Rosser, J. M. Yohe and L. Schoenfeld, Rigorous computation and the zeros of the Riemann zeta function, Proceedings of the IFIP Congress, vol 1: Mathematics, 70-76, Amsterdam, 1968, North-Holland. MR 0258245 (41:2892)
  • 10. E. C. Titchmarsh, On van der Corput's method and the zeta-function of Riemann, (IV). Quart. J. Math. Oxford Ser. 5, (1934), 98-105.
  • 11. E. C. Titchmarsh, revised by D. R. Heath-Brown, The theory of the Riemann zeta-function, Second edition, Oxford, 1994. MR 882550 (88c:11049)
  • 12. T. Trudgian, On the success and failure of Gram's Law and the Rosser Rule, Acta Arith. 148, (2011), 225-256. MR 2794929

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11M06

Retrieve articles in all journals with MSC (2010): 11M06


Additional Information

Kevin A. Broughan
Affiliation: University of Waikato, Hamilton, New Zealand
Email: kab@waikato.ac.nz

A. Ross Barnett
Affiliation: University of Waikato, Hamilton, New Zealand
Email: arbus@math.waikato.ac.nz

DOI: https://doi.org/10.1090/S0025-5718-2011-02565-2
Keywords: Gram points, Gram lines, Riemann zeta function
Received by editor(s): November 28, 2010
Received by editor(s) in revised form: March 25, 2011, and April 15, 2011
Published electronically: December 7, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society