Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A normal form for definite quadratic forms over $ \mathbb{F}_q[t]$


Author: Markus Kirschmer
Journal: Math. Comp. 81 (2012), 1619-1634
MSC (2010): Primary 11E12
DOI: https://doi.org/10.1090/S0025-5718-2011-02570-6
Published electronically: November 28, 2011
MathSciNet review: 2904594
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An efficient algorithm to compute automorphism groups and
isometries of definite $ \mathbb{F}_q[t]$-lattices for odd $ q$ is presented. The algorithm requires several square root computations in $ \mathbb{F}_{q^2}$ but no enumeration of orbits having more than eight elements.


References [Enhancements On Off] (What's this?)

  • 1. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. MR 1484478
  • 2. D.Z. Djoković, Hermitian matrices over polynomial rings, J. Algebra 43 (1976), 359-374. MR 0437565 (55:10489)
  • 3. L. Gerstein, Definite quadratic forms over $ \mathbb{F}_q[x]$, J. Algebra 268 (2003), no. 1, 252-263. MR 2005286 (2004f:11032)
  • 4. M. Kirschmer, Ideal classes for quaternion orders, in prepration.
  • 5. M. Kneser and R. Scharlau, Quadratische Formen, Springer-Verlag, 2002.
  • 6. F. Lübeck, Tables of Conway polynomials, http://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/index.html.
  • 7. H. Minkowski, Über die positiven quadratischen Formen und über kettenbruchähnliche Algorithmen, J. Reine Angew. Math. 107 (1891), 278-297.
  • 8. W. Plesken and B. Souvignier, Computing Isometries of Lattices, Journal of Symbolic Computation 24 (1997), 327-334. MR 1484483 (98i:11047)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11E12

Retrieve articles in all journals with MSC (2010): 11E12


Additional Information

Markus Kirschmer
Affiliation: Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, 52062 Aachen, Germany
Email: markus.kirschmer@math.rwth-aachen.de

DOI: https://doi.org/10.1090/S0025-5718-2011-02570-6
Received by editor(s): October 14, 2010
Received by editor(s) in revised form: March 28, 2011
Published electronically: November 28, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society