Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

   
 

 

Arithmetic $ (1;e)$-curves and Belyĭ maps


Author: Jeroen Sijsling
Journal: Math. Comp. 81 (2012), 1823-1855
MSC (2010): Primary 14H57; Secondary 14G35, 14Q05, 34B30
Published electronically: January 23, 2012
MathSciNet review: 2904604
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the theory of Belyĭ maps, we calculate the algebraic curves associated to the Fuchsian groups of signature $ (1;e)$ that are commensurable with a triangle group, along with the Picard-Fuchs differential equations on these curves, which are related to pullbacks of hypergeometric differential equations. We focus particularly on the $ (1;e)$-groups that are arithmetic.


References [Enhancements On Off] (What's this?)

  • 1. Yves André, 𝐺-functions and geometry, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, Braunschweig, 1989. MR 990016
  • 2. P. Bayer and A. Travesa, Uniformizing functions for certain Shimura curves, in the case 𝐷=6, Acta Arith. 126 (2007), no. 4, 315–339. MR 2289964, 10.4064/aa126-4-3
  • 3. Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1995. Corrected reprint of the 1983 original. MR 1393195
  • 4. Frits Beukers and Alexa van der Waall, Lamé equations with algebraic solutions, J. Differential Equations 197 (2004), no. 1, 1–25. MR 2030146, 10.1016/j.jde.2003.10.017
  • 5. Bryan Birch, Noncongruence subgroups, covers and drawings, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 25–46. MR 1305392
  • 6. Paula Beazley Cohen, Claude Itzykson, and Jürgen Wolfart, Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyĭ, Comm. Math. Phys. 163 (1994), no. 3, 605–627. MR 1284798
  • 7. Jean-Marc Couveignes, Calcul et rationalité de fonctions de Belyĭ en genre 0, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 1, 1–38 (French, with English and French summaries). MR 1262878
  • 8. Koji Doi and Hidehisa Naganuma, On the algebraic curves uniformized by arithmetical automorphic functions, Ann. of Math. (2) 86 (1967), 449–460. MR 0219537
  • 9. Martin Eichler, Zur Zahlentheorie der Quaternionen-Algebren, J. Reine Angew. Math. 195 (1955), 127–151 (1956) (German). MR 0080767
  • 10. Noam D. Elkies, Shimura curve computations, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 1–47. MR 1726059, 10.1007/BFb0054850
  • 11. Noam D. Elkies, Shimura curves for level-3 subgroups of the (2,3,7) triangle group, and some other examples, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 302–316. MR 2282932, 10.1007/11792086_22
  • 12. Josep González and Victor Rotger, Non-elliptic Shimura curves of genus one, J. Math. Soc. Japan 58 (2006), no. 4, 927–948. MR 2276174
  • 13. H. Hijikata, A. Pizer, and T. Shemanske, Orders in quaternion algebras, J. Reine Angew. Math. 394 (1989), 59–106. MR 977435
  • 14. H. W. Lenstra, Galois theory for schemes, Notes available at http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf.
  • 15. C. Maclachlan and G. Rosenberger, Two-generator arithmetic Fuchsian groups, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 3, 383–391. MR 698343, 10.1017/S0305004100060709
  • 16. G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
  • 17. Hossein Movasati and Stefan Reiter, Heun equations coming from geometry, Preprint available at http://w3.impa.br/ hossein/myarticles/movasati-reiter-08.pdf.
  • 18. Jean-Pierre Serre, Topics in Galois theory, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992. Lecture notes prepared by Henri Damon [Henri Darmon]; With a foreword by Darmon and the author. MR 1162313
  • 19. Hironori Shiga, Toru Tsutsui, and Jürgen Wolfart, Triangle Fuchsian differential equations with apparent singularities, Osaka J. Math. 41 (2004), no. 3, 625–658. With an appendix by Paula B. Cohen. MR 2107667
  • 20. Goro Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144–222. MR 0257031
  • 21. Jeroen Sijsling, Equations for arithmetic pointed tori, Ph.D. thesis, Universiteit Utrecht, 2010.
  • 22. -, Lamé equations and hypergeometric pullbacks, 2010, Webpage at http://sites.google.com/site/sijsling/programs.
  • 23. -, Canonical models for arithmetic $ (1;e)$-curves, In preparation, 2011.
  • 24. David Singerman, Subgroups of Fuschian groups and finite permutation groups, Bull. London Math. Soc. 2 (1970), 319–323. MR 0281805
  • 25. Kisao Takeuchi, A characterization of arithmetic Fuchsian groups, J. Math. Soc. Japan 27 (1975), no. 4, 600–612. MR 0398991
  • 26. Kisao Takeuchi, Commensurability classes of arithmetic triangle groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 201–212. MR 0463116
  • 27. Kisao Takeuchi, Arithmetic Fuchsian groups with signature (1;𝑒), J. Math. Soc. Japan 35 (1983), no. 3, 381–407. MR 702765, 10.2969/jmsj/03530381
  • 28. M. Van Hoeij and R. Vidunas, Transformations between the Heun and Gauss hypergeometric functions of the hyperbolic type, Paper in progress; data available at http://www.math.fsu.edu/ hoeij/files/Heun/TextFormat, 2011.
  • 29. Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
  • 30. John Voight, Computing CM points on Shimura curves arising from cocompact arithmetic triangle groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 406–420. MR 2282939, 10.1007/11792086_29
  • 31. John Voight, Shimura curves of genus at most two, Math. Comp. 78 (2009), no. 266, 1155–1172. MR 2476577, 10.1090/S0025-5718-08-02163-7
  • 32. Masaaki Yoshida, Fuchsian differential equations, Aspects of Mathematics, E11, Friedr. Vieweg & Sohn, Braunschweig, 1987. With special emphasis on the Gauss-Schwarz theory. MR 986252

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 14H57, 14G35, 14Q05, 34B30

Retrieve articles in all journals with MSC (2010): 14H57, 14G35, 14Q05, 34B30


Additional Information

Jeroen Sijsling
Affiliation: Mathematisch Instituut Universiteit Utrecht, Postbus 80010, 3508TA Utrecht, The Netherlands
Address at time of publication: IRMAR–Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cédex, France
Email: sijsling@gmail.com

DOI: http://dx.doi.org/10.1090/S0025-5718-2012-02560-9
Received by editor(s): October 13, 2010
Received by editor(s) in revised form: March 24, 2011
Published electronically: January 23, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.