Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture (Part II)


Author: Werner Bley
Journal: Math. Comp. 81 (2012), 1681-1705
MSC (2010): Primary 11G40, 14G10, 11G05
DOI: https://doi.org/10.1090/S0025-5718-2012-02572-5
Published electronically: January 25, 2012
MathSciNet review: 2904598
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We continue the study of the Equivariant Tamagawa Number Conjecture for the base change of an elliptic curve begun by the author in 2009. We recall that the methods developed there, apart from very special cases, cannot be applied to verify the $ l$-part of the ETNC if $ l$ divides the order of the group. In this note we focus on extensions of $ l$-power degree ($ l$ an odd prime) and describe methods for computing numerical evidence for ETNC$ {_l}$. For cyclic $ l$-power extensions we also express the validity of ETNC$ {_l}$ in terms of explicit congruences.


References [Enhancements On Off] (What's this?)

  • 1. W. Bley, Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture,
    Exp. Math. 20 (2011), no, 4, 426-456.
  • 2. W. Bley, D. Burns, Equivariant epsilon constants, discriminants and étale cohomology, Proc. London Math. Soc. 87 (2003), 545-590. MR 2005875 (2004i:11134)
  • 3. W. Bley, H. Johnston, Computing generators of free modules over orders in group algebras, J.Algebra (Computational Section) 320 (2008), 836-852. MR 2422318 (2009f:16030)
  • 4. W. Bley, H. Johnston, Computing generators of free modules over orders in group algebras II, Math. Comp. 80 (2011), 2411-2434.
  • 5. W. Bley, S. M.J. Wilson, Computations in relative algebraic K-groups, LMS JCM . 12 (2009), 166-194. MR 2564571 (2010k:16013)
  • 6. M. Breuning, On equivariant global epsilon constants for certain dihedral extensions, Math. Comp. 73 (2004), 881-898. MR 2031413 (2004m:11186)
  • 7. M. Breuning, D. Burns, Additivity of Euler characteristics in relative algebraic K-groups, Homology, Homotopy and Applications 7 (2005), 11-36. MR 2200204 (2006k:18015)
  • 8. M. Breuning, D. Burns, Leading terms of Artin $ L$-functions at $ s=0$ and $ s=1$, Compositio Math. 143 (2007), 1427-1464. MR 2371375 (2009a:11232)
  • 9. K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer, New York 1994. MR 1324339 (96a:20072)
  • 10. D. Burns, M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305 (1996) 65-102. MR 1386106 (98g:11127)
  • 11. D. Burns, M. Flach, Tamagawa numbers for motives with (non-commutative) coefficients, Documenta Math. 6 (2001) 501-570. MR 1884523 (2002m:11055)
  • 12. D. Burns, Equivariant Whitehead torsion and refined Euler characteristics, CRM Proceedings and Lecture Notes, vol. 36 (American Mathematical Society, Providence, RI, 2004), 35-59. MR 2076565 (2005d:19002)
  • 13. D. Burns, On leading terms and values of equivariant motivic L-functions, Pure App. Math. Q. 6 (John Tate Special Issue, Part II) (2010) 83-172. MR 2591188 (2011f:11155)
  • 14. C. CURTIS, I. REINER: Methods of representation theory, volume I and II. Wiley, 1981 and 1987. MR 632548 (82i:20001)
  • 15. H. Cohen, Advanced topics in computational number theory, Springer-Verlag (2000). MR 1728313 (2000k:11144)
  • 16. H. Darmon, Euler systems and refined conjectures of Birch and Swinnerton-Dyer type, Contemporary Mathematics 165 (1994), 265-276. MR 1279613 (95h:11062)
  • 17. H. Darmon, Heegner points, Stark-Heegner points and values of $ L$-series, International Congress of Mathematicians. Vol. II, 313-345, Eur. Math. Soc., Zürich, 2006. MR 2275600 (2008g:11097)
  • 18. B. H.  Gross, D. B. Zagier, Heegner points and derivatives of L-series, Inventiones Mathematicae 84 (2), (1986) 225-320. MR 833192 (87j:11057)
  • 19. A. Grothendieck, Groupes de Monodromie en Géométrie Algébrique (SGA 7 I), Lecture Notes in Math. 288, Springer-Verlag, 1972. MR 0354656 (50:7134)
  • 20. G. Kings, The equivariant Tamagawa number conjecture and the Birch-Swinnerton-Dyer conjecture, to appear in IAS/Park City Mathematics Series 2009.
  • 21. V.A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Progr. in Math. 87, Boston, Boston, MA (1990). MR 1106906 (92g:11109)
  • 22. V.A. Kolyvagin, D.Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Leningrad Math. J. 1, (1990) 1229-1253. MR 1036843 (91c:11032)
  • 23. V.A. Kolyvagin, D.Y. Logachev, Finiteness of over totally real fields, USSR Izvestiya 39, (1992), 829-853. MR 1137589 (93d:11063)
  • 24. MAGMA, Version V2.12, Sydney, 2005.
  • 25. J. S. Milne, Étale cohomology, Princeton University Press, Princeton, New Jersey (1980). MR 559531 (81j:14002)
  • 26. T. Nakayama, On modules of trivial cohomology over a finite group. II. Finitely generated modules, Nagoya Math. J. 12, (1957) 171-176. MR 0098125 (20:4587)
  • 27. J.-P. Serre, Local fields, Springer-Verlag (1979). MR 554237 (82e:12016)
  • 28. G. Grigorov, A. Jorza, S. Patrikis, W. A. Stein, C. Tarnita-Patrascu, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Mathematics of Computation 78 (2009), 2397-2425. MR 2521294 (2010g:11106)
  • 29. O. Venjakob, From the Birch and Swinnerton-Dyer Conjecture over the Equivariant Tamagawa Number Conjecture to non-commutative Iwasawa theory, in L-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, 333-380. MR 2392359 (2009j:11178)
  • 30. S. Zhang, Heights of Heegner points on Shimura curves, Annals of Math. 153, (2001) 27-147. MR 1826411 (2002g:11081)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G40, 14G10, 11G05

Retrieve articles in all journals with MSC (2010): 11G40, 14G10, 11G05


Additional Information

Werner Bley
Affiliation: Mathematisches Institut der Universität München, Theresienstr. 39, 80333 München, Germany
Email: bley@math.lmu.de

DOI: https://doi.org/10.1090/S0025-5718-2012-02572-5
Received by editor(s): August 4, 2010
Received by editor(s) in revised form: April 26, 2011
Published electronically: January 25, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society