
MATHEMATICS OF COMPUTATION
Volume 81, Number 280, October 2012, Pages 2175–2205
S 0025-5718(2012)02583-X
Article electronically published on April 5, 2012

INFINITE-DIMENSIONAL INTEGRATION ON

WEIGHTED HILBERT SPACES

MICHAEL GNEWUCH

Abstract. We study the numerical integration problem for functions with in-
finitely many variables which stem from a weighted reproducing kernel Hilbert
space. We study the worst case ε-complexity which is defined as the minimal
cost among all algorithms whose worst case error over the Hilbert space unit
ball is at most ε. Here we assume that the cost of evaluating a function depends
polynomially on the number of active variables. The infinite-dimensional inte-
gration problem is tractable if the ε-complexity is bounded by a constant times
a power of 1/ε. The smallest such power is called the exponent of tractability.

We provide improved lower bounds for the exponent of tractability for gen-
eral finite-order weights and, with the help of multilevel algorithms, improved
upper bounds for three newly defined classes of finite-order weights. The
newly defined finite-intersection weights model the situation where each group
of variables interacts with at most ρ other groups of variables, ρ some fixed
number. For these weights we obtain sharp upper bounds for any decay of
the weights and any polynomial degree of the cost function. For the other two
classes of finite-order weights our upper bounds are sharp if, e.g., the decay of
the weights is fast or slow enough.

Furthermore, we deduce a lower bound for the exponent of tractability for
arbitrary weights and a constructive upper bound for product weights.

1. Introduction

Integrals over functions with an unbounded or infinite number of variables are
important in quantum chemistry and physics, as well as in financial mathematics;
see, e.g., [8, 39] and the references mentioned therein. In this paper we study the
numerical integration problem for functions defined over the infinite-dimensional
unit cube [0, 1]N. The functions belong to a reproducing kernel Hilbert space Hγ .
Its kernel is built up from weighted sums of products of the 1-dimensional repro-
ducing kernel K(x, y) = min{x, y}. The role of the weights γ is to moderate the
importance of different groups of variables. In fact, the infinite-dimensional integra-
tion problem consists of infinitely many finite-dimensional integration sub-problems
of varying importance, and the importance of each sub-problem is proportional to
the corresponding weight. The finite-dimensional integration sub-problems are in-
timately related to L2-star discrepancy.

We assume that the evaluation of functions from Hγ is only possible at points
with finitely many components different from zero. (We call these components
“active variables”.) Furthermore, we assume that the cost of a single evaluation
depends polynomially on the number of components different from zero.
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We study the worst case ε-complexity which is defined as the minimal cost among
all algorithms whose worst case error over the Hilbert space unit ball is at most ε.
The infinite-dimensional integration problem is said to be (polynomially) tractable
if the ε-complexity is bounded by a constant times a power of 1/ε. The smallest
such power is called the exponent of tractability.

Tractability of numerical integration for functions with an infinite number of
variables has been studied, e.g., in [3, 18, 20, 22, 24, 28, 29, 34, 39]. Except for
[20, 34, 39] all of these papers consider varying cost of function evaluations.

In this paper we study the setting proposed in [22]. In particular, we improve
upper and lower bounds for the exponent of tractability provided in [22] for finite-
order weights, and improve on the upper bound given in [22] for product weights.

Let us explain our results in more detail. After describing the setting in Section 2,
we study finite-order weights in Section 3. For finite-order weights γ of order ω,
each function from the Hilbert space Hγ can be represented as a (usually infinite)
sum of functions that depend on at most ω variables. Upper and lower bounds
on the exponent of tractability have been provided in [22, Sect. 4]. The upper
bound from [22] was achieved by employing an algorithm that uses only function
evaluations at points with at most ω non-zero components.

In Section 3.1, we prove some lower bounds for the exponent of tractability.
In Theorem 3.2 we show that if we restrict the class of admissible algorithms to
those that use for fixed B ≥ ω only function evaluations at points with at most
B non-zero components, then the upper bound on the exponent of tractability
provided in [22, Sect. 4] is indeed sharp. We additionally introduce “cut-off weights”
γ(σ) and quantities t∗σ, σ = 1, 2, . . ., which allow us a more careful analysis of the
dependence of the infinite-dimensional integration problem on the given weights γ.
This analysis enables us to improve the lower bound on the tractability exponent
for general algorithms from [22, Sect. 4]; see Theorem 3.4. Afterwards we illustrate
our lower bounds for three newly defined classes of finite order weights:

• finite-intersection weights (which, in particular, include finite-diameter
weights),

• finite-product weights (which are defined as the product weights introduced
by Sloan and Woźniakowski in [36], except that all weights of sets of vari-
ables with cardinality larger than some fixed ω are set to zero),

• lexicographically-ordered weights (whose properties complement the prop-
erties of the other two classes of weights).

In Section 3.2, we introduce an algorithm for the infinite-dimensional integration
problem. It is especially useful in the case where the polynomial degree s of the cost
function is less than the order ω of the finite-order weights. As we will explain later,
this case is indeed the most important one. The algorithm combines a multilevel
idea with quasi-Monte Carlo integration using sample points whose projections
onto important sets of coordinates exhibit a small L2-star discrepancy. Multilevel
algorithms for numerical integration have been introduced by Heinrich [15, 16]
and Giles [8, 9]. Furthermore, multilevel algorithms have been used for infinite-
dimensional integration in [3, 10, 18, 24, 29]. For further references to multilevel
ideas see the literature mentioned in these papers.

We use our algorithm to improve the upper bound on the tractability exponent
from [22] for the three classes of finite-order weights mentioned above.
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In the case of finite-intersection weights our upper bound matches our lower
bound for all values of s and any decay of the weights; see Theorem 3.12. This is
the first class of weights for which the exact exponent of tractability is known for
any possible decay of the weights and for any polynomial degree of the cost function.
The result relies, in particular, on the discrepancy result proved in Proposition 3.11.

Our upper bounds for lexicographically-ordered and finite-product weights match
the corresponding lower bounds if, e.g., the decay of the weights is fast or slow
enough; see Theorem 3.14 and 3.16.

In Section 4, we apply our methods and results for finite-order weights to the case
of arbitrary weights. In Section 4.1, we state a new lower bound for the exponent
of tractability for arbitrary weights, which is a direct corollary of Theorem 3.4. In
particular, it generalizes the non-trivial lower bound for product weights that was
proved in [22].

As already mentioned, our multilevel algorithm is especially useful for finite-order
weights if s < ω. For weights that are not of finite order, we have formally ω = ∞;
we call such weights “infinite-order weights”. Therefore it is not too surprising
that our algorithm should also lead to good results for infinite-order weights. We
illustrate this for product weights in Theorem 4.2. The upper bound provided
there improves significantly on the bounds provided in [22, Sect. 3]. In particular,
we show that the exponent of tractability p∗ takes the optimal value p∗ = 1 if the
decay of the weights is sufficiently fast. In contrast, if s > 0 and the weights do
not decay super-polynomially, the upper bound on p∗ from [22, Sect. 3] is strictly
larger than 1. Moreover, our upper bound also matches the lower bound in the case
where s ≤ 1 and the decay of the weights is sufficiently slow. Independently from
our work, the same result has been proved in the recent paper [29] by a different
analysis for an alternative cost model, the so-called variable subspace sampling
model. We will discuss this cost model and the result from [29] in detail in Remark
4.4.

Between the submission and the revision of this article, two new papers on
infinite-dimensional integration were completed [2, 33]. Both papers treat the ran-
domized setting, and [33] in addition also the worst case (deterministic) setting.
We added a brief discussion of the worst case setting results from [33] in Remark
4.5.

Although we confine ourselves for the sake of clarity to explicit upper bounds for
four classes of weights, we stress that our multilevel algorithm together with our
generic (weight-specific) choice of quasi-Monte Carlo points from Proposition 3.9 is
applicable to any class of weights.

Our results can be extended to more general reproducing kernel Hilbert spaces.
Since this paper is already rather long, we do not discuss these kinds of general-
izations in detail. Natural function space settings to which our analysis and our
algorithm can be generalized are, e.g., considered in [22, Sect. 5] and [29].

2. The setting

In this paper, we consider the setting studied in [22]. Let us recall the basic
notions from [22, Sect. 2] and add some definitions and notation that are helpful
to describe our results.

Let us start with some general notation: For d ∈ N we denote by [d] the set
{1, 2, . . . , d}. Furthermore, we denote the cardinality of a finite set A by |A|.
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2.1. Weights. Let γ = {γu}u⊂N;|u|<∞ be a given set of non-negative numbers γu
that are called weights. For a given set of weights γ we denote by γ̂ the set of
weights defined by

(1) γ̂u := γu3
−|u| for all finite u ⊂ N.

Weights γ are called finite-order weights of order ω if there exists an ω ∈ N such
that γu = 0 for all u ∈ N with |u| > ω. Finite-order weights were introduced by
Dick et al. in [5] for spaces of functions with a finite number of variables.

The weights we introduce in the following definition will be essential for our
analysis.

Definition 2.1. For weights γ and σ ∈ N let us define the cut-off weights of order
σ:

(2) γ(σ) = {γ(σ)
u }u⊂N;|u|<∞ via γ

(σ)
u =

{
γu if |u| ≤ σ,

0 otherwise.

Clearly, cut-off weights of order σ are in particular finite-order weights of order
σ.

Let us now assume that we have a bounded set of weights {γ(σ)
u }u⊂N;|u|<∞ that

has 0 as the sole accumulation point. Note that the set {u ⊂ N | |u| < ∞} is
infinite, but still countable. Thus let us denote by u1(σ), u2(σ), . . ., the non-empty

sets u ⊂ N with γ
(σ)
u > 0 for which γ̂

(σ)
u1(σ)

≥ γ̂
(σ)
u2(σ)

≥ · · · . Let us put u0(σ) := ∅. We

can make the same definitions for σ = ∞; then we have obviously γ(∞) = γ. For
convenience we will usually suppress any reference to σ in the case where σ = ∞.
For σ ∈ N ∪ {∞} let us define

tailγ,σ(d) :=

∞∑
j=d+1

γ̂
(σ)
uj(σ)

∈ [0,∞]

and

decayγ,σ := sup

{
p ∈ R

∣∣∣ lim
j→∞

γ̂
(σ)
uj(σ)

jp = 0

}
.

Next we define quantities that describe for σ ∈ N ∪ {∞}, roughly speaking, the
density of the set system {u1(σ), u2(σ), . . .} in {v ⊂ N | |v| < ∞}. As we shall
see later, these quantities provide essentially an upper bound on the efficiency of
projection, i.e., on the number of non-trivial finite-dimensional integration sub-
problems we can tackle by using sample points with active variables in coordinate
sets v ⊂ N, |v| < ∞.

Definition 2.2. For σ ∈ N ∪ {∞} let t∗σ ∈ [0,∞] be defined as

t∗σ = inf
{
t ≥ 0 | ∃Ct > 0 ∀ v ⊆ N : |v| < ∞ =⇒ |{i ∈ N | ui(σ) ⊆ v}| ≤ Ct|v|t

}
.

Let σ ∈ N. Since |ui(σ)| ≤ σ for all i ∈ N, we have obviously t∗σ ≤ σ. On the
other hand, if we have an infinite sequence {uj(σ)}j∈N, it is easy to see that t∗σ ≥ 1.

Indeed, define Vk =
⋃k

i=1 ui(σ). Then k ≤ |{i ∈ N | ui(σ) ⊆ Vk}| and |Vk| ≤ kσ.
Thus, if there exist t, Ct > 0 such that |{i ∈ N | ui(σ) ⊆ Vk}| ≤ Ct|Vk|t for all k ∈ N,
then necessarily Ct ≥ k1−tσ−t for all k. Hence t ≥ 1.
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2.2. Weighted Hilbert spaces. In this subsection, we define the weighted repro-
ducing kernel Hilbert spaces whose functions serve as our integrands. Our standard
reference for basic properties of reproducing kernel Hilbert spaces and their ker-
nels is [1]. Additional information about the reproducing kernel Hilbert spaces we
consider here can, e.g., be found in [20, 22].

Let

K : [0, 1]× [0, 1] → R be given by K(x, y) := min{x, y}.
K is a reproducing kernel, and the corresponding reproducing kernel Hilbert space
H(K) is the space of absolutely continuous functions f : [0, 1] → R with f(0) = 0,
whose weak derivatives f ′ are in L2([0, 1]), the space of square-integrable functions
on [0, 1]. Its inner product is given by

〈f, g〉H(K) =

∫ 1

0

f ′(x) g′(x) dx,

and the reproducing property reads as

f(x) = 〈f,K(x, ·)〉H(K) for all f ∈ H(K), x ∈ [0, 1].

Let γ = {γu}u⊂N;|u|<∞ be a given set of weights. If not explicitly stated otherwise,
we always require that

(3) γ∅ = 1 and
∑

u⊂N ; |u|<∞
γu < ∞,

and assume furthermore that for at least one finite, non-empty subset u of N we
have γu > 0. Note that (3) implies that decayγ,σ ≥ 1 for all σ ∈ N ∪ {∞}. For

infinite-dimensional vectors x,y ∈ [0, 1]N, define

(4) Kγ(x,y) :=
∑

u⊂N ; |u|<∞
γu Ku(x,y),

where

Ku(x,y) :=
∏
j∈u

K(xj , yj) =
∏
j∈u

min{xj , yj}.

Here we use the convention that the empty product is 1. Since the function K
takes only values in [0, 1], condition (3) implies that Kγ is pointwise well-defined
and bounded. It is well known that Ku and Kγ are also reproducing kernels; see [1].
The reproducing kernel Hilbert space Hγ := H(Kγ) corresponding to Kγ consists
of functions f, g : [0, 1]N → R which are once weakly differentiable with respect
to all variables, and their mixed weak derivatives are square integrable. Its inner
product is given by

(5) 〈f, g〉Hγ
= f(0) g(0) +

∑
u⊂N ; 1≤|u|<∞

1

γu

∫
[0,1]|u|

∂|u|

∂xu

f(xu;0)
∂|u|

∂xu

g(xu;0) dxu,

where we use the convention 0/0 = 0. Here, xu = (xj)j∈u is a vector with |u|
components and (xu;0) denotes the vector y = (y1, y2, . . . ) ∈ [0, 1]N with yj = xj

if j ∈ u and yj = 0 otherwise. Furthermore, ∂|u|/∂xu is a simplified notation for∏
j∈u

(∂/∂xj). We denote the norm in Hγ by ‖ · ‖Hγ
. If γu = 0, then we have for

all f ∈ Hγ ,

∂|u|

∂xu

f(xu;0) = 0 for almost all xu ∈ [0, 1]|u|.
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For a finite subset u ⊂ N, let H(Ku) denote the Hilbert space with reproducing
kernel Ku. For u = ∅ we have H(K∅) = span{1}, where 1 is the constant function
taking only the value 1. For non-empty u, a function in H(Ku) depends only on
the variables xj , j ∈ u, and vanishes whenever xj = 0 for some j ∈ u. For u �= ∅,
the inner product in H(Ku) is

〈f, g〉H(Ku)
=

∫
[0,1]|u|

∂|u|

∂xu

f(xu;0)
∂|u|

∂xu

g(xu;0) dxu,

implying

(6) ‖f‖Hγ
= γ

−1/2
u ‖f‖H(Ku) for all f ∈ H(Ku).

For u �= v the spaces H(Ku) and H(Kv) are orthogonal, i.e., the space Hγ is the
direct orthogonal sum

Hγ =
⊕

u⊂N;|u|<∞
H(Ku).

For finite u ⊂ N, let Pu denote the orthogonal projection

(7) Pu : Hγ → H(Ku) , f �→ fu.

Then any function f ∈ Hγ has the unique orthogonal representation

(8) f =
∑

u⊂N ; |u|<∞
fu with fu = Pu(f) ∈ H(Ku).

This implies

‖f‖2Hγ
=

∑
u⊂N ; |u|<∞

‖fu‖2Hγ
=

∑
u⊂N ; |u|<∞

γ−1
u ‖fu‖2H(Ku)

.

The decomposition in (8) is a special case of the projection decomposition discussed
in [20] and the infinite-dimensional generalization of the anchored decomposition
discussed in [23], with anchor at the origin. As already said, each function fu
depends only on the variables with indices in u. To stress this fact we write, as in
[22],

fu(x) = fu(xu;0) = fu(xu);

here and in the rest of the paper we use the convention to denote for a vector
x ∈ [0, 1]N the |u|-dimensional vector (xj)j∈u by xu.

2.3. Infinite-dimensional integrals. For f ∈ Hγ , we want to approximate the
infinite-dimensional integral

I∞(f) =

∫
[0,1]N

f(x) dx,

where dx is the infinite product measure of the Lebesgue measure restricted to
[0, 1]. Since f(x) = 〈f,Kγ(x, ·)〉Hγ

for all f ∈ Hγ and all x ∈ [0, 1]N, we can

represent I∞ as

I∞(f) = 〈f, h〉Hγ
for all f ∈ Hγ ,

where the representer h ∈ Hγ is given by

h(x) =

∫
[0,1]N

Kγ(x,y) dy =
∑

u⊂N ;|u|<∞
γu

∏
j∈u

(
xj −

1

2
x2
j

)
.
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The operator norm of the functional I∞ is given by

‖I∞‖Hγ
= ‖h‖Hγ

=

( ∑
u⊂N ; |u|<∞

γ̂u

)1/2

.

For finite u ⊂ N and f ∈ Hγ , define Iu := I∞ ◦Pu , i.e., Iu(f) = 〈f, Pu(h)〉Hγ
. Thus

Iu(f) =

∫
[0,1]|u|

fu(xu) dxu,

and the representer hu of Iu is given by

hu(xu) = Pu(h)(xu) = γu
∏
j∈u

(
xj −

1

2
x2
j

)
.

Using this notation, we get

I∞(f) =
∑

u⊂N;|u|<∞
Iu(fu) for all f ∈ Hγ .

2.4. Algorithms. As in [22], we assume that we can compute f(x) only for x ∈
[0, 1]N with finitely many components different from zero. We further assume that
for each f ∈ Hγ , each finite u ⊂ N, and each vector xu, whose components are
all different from zero, the cost of computing f(xu;0) is equal to $(|u|) for a given
non-decreasing cost function

(9) $ : N0 → [1,∞),

where N0 := {0} ∪ N. For our lower bounds we will usually assume $(k) = Ω(ks)
(i.e., ks = O($(k)) ), for our upper bounds $(k) = O(ks) for some non-negative s.

Since the problem of approximating I∞ is linear and we want to study the worst
case error of algorithms over a convex and balanced set, it is known; see, e.g., [38],
that non-linear algorithms and adaption do not help. Due to this, we consider,
without loss of generality, linear algorithms of the form

(10) Q(f) =

n∑
i=1

ai f(x
(i)
vi
;0)

for some n ∈ N, finite sets vi ⊂ N, ai ∈ R, and sampling points (x
(i)
vi
;0) for

i = 1, 2, . . . , n, where we assume that all components of x
(i)
vi

are non-zero.
The cost of the algorithm Q is then defined by

(11) cost(Q) :=
n∑

i=1

$(|vi|).

The worst case error of Q is defined by

e(Q;Hγ) := sup
‖f‖Hγ≤1

|I∞(f)−Q(f)| = ‖I∞ −Q‖Hγ
.

We may express the approximation error as

I∞(f)−Q(f) = 〈f, h− hQ〉Hγ
, where hQ :=

n∑
i=1

ai Kγ((x
(i)
vi
;0), ·).
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This implies, in particular, e(Q;Hγ) = ‖I∞ − Q‖Hγ
= ‖h − hQ‖Hγ

. For a finite
u ⊂ N, define Qu := Q ◦ Pu , i.e.,

(12) Qu(f) = 〈f, Pu(hQ)〉Hγ
=

∑
i:u⊆vi

ai fu(x
(i)
u ;0).

Due to (4) and the uniqueness of the orthogonal representation (8), the representer
hQ,u of Qu is given by

hQ,u = Pu(hQ) =
∑

i:u⊆vi

ai γuKu((x
(i)
u ;0), ·).

Using this notation, we get

(13) Q(f) =
∑

u⊂N;|u|<∞
Qu(fu)

and the useful identity

(14) [e(Q;Hγ)]
2 =

∑
u⊂N;|u|<∞

‖Iu −Qu‖2Hγ
=

∑
u⊂N;|u|<∞

γu‖Iu −Qu‖2H(Ku)
.

Please note that (13) is just a mathematical identity and not a description of how
the algorithm Q is actually executed. If we speak about an algorithm Q of form
(10), then it will always be executed in its form (10). Consequently, its cost is
always given by (11).

2.5. Discrepancy. High- and infinite-dimensional integration on reproducing ker-
nel Hilbert spaces are intimately related to discrepancy; see, e.g., the papers [17,
36, 20, 30, 11] or the recent monograph [32]. In particular, for finite u ⊂ N the
worst case error of multivariate numerical integration on H(Ku) is related to the
L2-star discrepancy.

For a point set T = {t(1), . . . , t(n)} ⊂ [0, 1]|u| and coefficients a = (a1, . . . , an) ∈
R

n let us define the L2-star discrepancy of T with respect to a by

disc∗2,|u|(a, T ) :=

⎛⎜⎝∫
[0,1]|u|

⎛⎝∏
j∈u

xj −
n∑

j=1

aj1[0,xu)(t
(j))

⎞⎠2

dxu

⎞⎟⎠
1/2

,

where [0,xu) =
∏

j∈u
[0, xj) and 1[0,xu) denotes the characteristic function of the

set [0,xu). In the case where all coefficients are ai = 1/n, we suppress the explicit
reference to a.

Let 1 := (1, 1, . . . , 1) ∈ [0, 1]|u| and denote the points 1− t(j) by t
(j)

and the set

{t(1), t(2), . . . , t(n)} by T . If the linear algorithm Q̃u is given by

Q̃u(fu) =

n∑
i=1

aifu(t
(i)) for fu ∈ H(Ku),

then it is well known that the worst case error of approximating Iu by Q̃u is

(15) e(Q̃u, H(Ku)) := ‖Iu − Q̃u‖H(Ku) = disc∗2,|u|(a, T );

see, e.g., [32, Ch. 9]. In particular, we have for the zero algorithm, i.e., the algorithm
which approximates Iu(f) for all f by 0,

(16) e(0, H(Ku)) = ‖Iu‖H(Ku) = 3−|u|/2.
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Another important discrepancy measure is the star discrepancy of T with respect
to the set of coefficients a, given by

disc∗∞,|u|(a, T ) := sup
xu∈[0,1]|u|

∣∣∣∣∣∣
∏
j∈u

xj −
n∑

j=1

aj1[0,xu)(t
(j))

∣∣∣∣∣∣ .
Obviously, we have always disc∗2,|u|(a, T ) ≤ disc∗∞,|u|(a, T ). This is a useful relation,
since the star discrepancy of projections of a point set is always at most as large as
the star discrepancy of the point set itself and the construction of point sets with
low star discrepancy has been intensively studied in the past; see, e.g., the papers
[14, 37, 7, 25, 27, 21, 6], the monographs [26, 32], and the literature mentioned
therein.

2.6. Polynomial tractability. The worst case ε-complexity is defined as the min-
imal cost among all algorithms of the form (10), whose worst case errors are at
most ε, i.e.,

(17) comp(ε;Hγ) := inf {cost(Q) | Q is of the form (10) and e(Q;Hγ) ≤ ε} .
The integration problem I∞ is said to be polynomially tractable if there are non-
negative constants C and p such that

(18) comp(ε;Hγ) ≤ C ε−p for all ε > 0.

The exponent of polynomial tractability is given by

p∗ = p∗(γ) := inf{p | p satisfies (18)}.
If u �= ∅, then it is well known that for the space H(Ku) the minimal worst case
error of algorithms using n function values is of order at least n−1. Since we
assumed in Section 2.1 that at least one γu is positive for some u �= ∅, we have
comp(ε;Hγ) = Ω(ε−1), and therefore p∗ ≥ 1. Essentially, 1/p∗ is the optimal
convergence rate of the Nth minimal worst case error

(19) eγ(N) := inf{e(Q;Hγ) | Q is of the form (10) and cost(Q) ≤ N}.
One can, of course, also be interested in studying different notions of tractability.

For multivariate problems such notions have been defined and studied; e.g., in
[12, 13, 31]. Here in this paper we focus solely on polynomial tractability. That is
why we use from now on the shorthand “tractability” for “polynomial tractability”.

3. Finite-order weights

Let us consider finite-order weights γ = {γu}u⊂N;|u|<∞ of order ω. Due to our

convention of notation, we have γ = γ(ω) = γ(∞). Note that for finite-order weights
of order ω we have γ̂u ≤ γu ≤ 3ωγ̂u, i.e., γ̂u = Θ(γu).

The following result for finite-order weights was presented in [22].

Theorem 3.1 ([22, Thm. 5(b)]). Let γ be finite-order weights of order ω. Let
$(k) = Ω(ks) with s > 0. The integration problem I∞ is polynomially tractable
if and only if decayγ,ω > 1. When this holds, then the tractability exponent p∗

satisfies

(20) max

{
1,

2min{1, s/ω}
decayγ,ω −1

}
≤ p∗ ≤ max

{
1,

2

decayγ,ω −1

}
.
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In particular, we have p∗ = 1 for decayγ,ω ≥ 3 and

p∗ =
2

min{3, decayγ,ω} − 1
for s ≥ ω.

Thus the exact value of the exponent of tractability is known if decayγ,ω ≥ 3
or if s ≥ ω. It was left open in [22] what is the exact value of the exponent of
tractability if the cost function satisfies $(k) = Θ(ks) for some s ∈ [0, ω) and if
decayγ,ω ∈ (1, 3). We believe that the case s ∈ [0, ω) is in fact the more important
one. Clearly, the dependence of the cost function $(k) on the numbers of non-zero
variables could be very different in different applications. But it seems reasonable
to assume that in most applications $(k) depends linearly or slightly worse on k.
This assumption means, in particular, that s ∈ [0, ω) for all ω > 1. (The case
ω = 1 is not very interesting, since different variables do not interact. We provide a
complete solution for this case in Remark 3.13.) Another reason for the importance
of the case s ∈ [0, ω) are infinite-order weights. We may view infinite-order weights
as the limiting case of finite-order weights, whose order ω tends to infinity. In the
limiting process we finally have s ∈ [0, ω) for ω sufficiently large. We will use this
observation in Section 4, where we extend our results for finite-order weights to
infinite-order weights.

In this section we improve (20). For general finite-order weights we improve
the lower bound and, with the help of a new multilevel algorithm, for three newly
defined classes of finite-order weights, also the upper bound. These lower and upper
bounds match if decayγ,ω is large or small enough. For finite-intersection weights
(see Definition 3.5) we will provide the exact exponent of tractability for all values
of s and decayγ,ω.

3.1. Lower bounds for finite-order weights. Let us start by making an obser-
vation. The upper bound in Theorem 3.1 holds also for s = 0. Indeed, as pointed
out in [22], the special form of the cost function $ does not play a major role in
the upper bound for the exponent of tractability in (20). This is due to the fact
that the proof of the upper bound in [22] relies on a linear algorithm that only
uses function values at points with at most ω non-zero components. If we restrict
ourselves to this class of linear algorithms, it can be shown that the upper bound
in (20) is indeed sharp. More generally, we have the following result:

Theorem 3.2. Let $ be an arbitrary cost function as defined in (9). Let γ be
finite-order weights of order ω that satisfy decayγ,ω > 1. Let B ≥ ω be a natural
number. If we restrict ourselves to linear algorithms that use only function evalu-
ations at points with at most B non-zero components, i.e., to algorithms Q of the
form (10) with maxi∈[n] |vi| ≤ B, then the corresponding exponent p∗B of polynomial
tractability is given by

p∗B = max

{
1,

2

decayγ,ω −1

}
.

Proof. We adapt the proof approach of [22, Thm. 5(b)]. Let Q be of the form (10)
with maxi∈[n] |vi| ≤ B. Its cost is given by (11). We obtain (see (13) and (12)),

Q(f) =
∞∑
j=0

Quj
(fuj

) =
∞∑
j=0

nj∑
�=1

aj�fuj
(x

(j�)
uj

;0),
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where the sets uj = uj(ω) are defined as in Section 2.1, nj = |{vi | uj ⊆ vi}|, and
{vi|uj ⊆ vi} = {vj1 , . . . , vjnj

}.
The integration problem overH(Kuj

), uj �= ∅, is at least as hard as the univariate
case. More precisely, there exist a b > 0 and for each j a function f∗

uj
∈ H(Kuj

)
such that

|Iuj
(f∗

uj
)−Quj

(f∗
uj
)| ≥ b(nj + 1)−13−|uj |/2‖f∗

uj
‖H(Kuj

)

= b(nj + 1)−1γ
1/2
uj 3−|uj |/2‖f∗

uj
‖Hγ

;

see (6). Thus we get from identity (14) the bound

(21) [e(Q;Hγ)]
2 ≥ b2

∞∑
j=1

γ̂uj

(nj + 1)2

on the worst-case error of the algorithm Q. Due to $(k) ≥ 1 for all k ∈ N0, we have
n ≤ cost(Q). Put N := cost(Q). Then

∞∑
j=0

nj =

n∑
i=1

|{j ∈ N0 | uj ⊆ vi}| ≤
n∑

i=1

min{|vi|,ω}∑
�=0

(
|vi|
�

)
≤

n∑
i=1

min{|vi|,ω}∑
�=0

Bω

�!

≤
n∑

i=1

eBω = eBωn ≤ eBωN.

(22)

Hence we have
∑∞

j=0 nj ≤ S with S := �eBωN�.
Put M := |{nj |nj �= 0}|. We have M ≤ S. To minimize our lower bound (21)

for [e(Q;Hγ)]
2, it is clearly the best to choose those nj ≥ 1 whose corresponding

weights γ̂uj
are largest, i.e., to choose n1, . . . , nM ≥ 1. Due to these observations

we get

(23) eγ,B(N) ≥ b min
M=1,2,...,S

⎛⎝ M∑
j=1

γ̂uj

(nj + 1)2
+ tailγ,ω(M)

⎞⎠1/2

,

where eγ,B(N) is the Nth minimal worst case error that can be achieved by algo-
rithms Q of the form (10) with maxi∈[n] |vi| ≤ B. Since decayγ,ω > 1, we know
from Theorem 3.1 that I∞ is tractable. As already explained, the upper bound in
(20) holds for general cost functions, and the algorithm used to establish it uses
only function evaluations at points with at most ω non-zero components; see [22,
Thm. 5]. Hence p∗B < ∞, and we have eγ,B(N) = O(N−1/p) for any p > p∗B. Due
to the monotonicity of the γ̂uj

, j = 1, 2, . . ., and (23) we get

(24) Sγ̂u2S
≤

2S∑
j=S+1

γ̂uj
≤ tailγ,ω(S) ≤ b−2[eγ,B(N)]2 = O(N−2/p).

We get γ̂u2S
= O(S−1−2/p), which implies decayγ,ω ≥ 1 + 2/p∗B. In this case we

thus have

p∗B ≥ 2

decayγ,ω −1
.

We also have p∗B ≥ 1, since this even holds in the one-dimensional case. This
completes the proof. �
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With the help of the quantities t∗σ, σ ≤ ω, from Definition 2.2 and the following
remark we are able to improve the lower bound for general linear algorithms in
(20).

Remark 3.3. If γ̃ is another set of weights satisfying γ̃u ≤ γu for all finite u ⊂ N,
then the corresponding reproducing kernel Hilbert space Hγ̃ has a larger norm than
Hγ , i.e.,

‖f‖Hγ̃
≥ ‖f‖Hγ

for all f ∈ Hγ̃ ;

see (5). In particular, Hγ̃ ⊆ Hγ , and the unit ball of Hγ̃ is contained in the unit
ball of Hγ . Hence

e(Q;Hγ̃) ≤ e(Q,Hγ) for any algorithm Q.

This shows that the infinite-dimensional integration problem over Hγ̃ is at most as
hard as the one over Hγ , and consequently, the tractability exponent p∗(γ̃) for the
weighted space Hγ̃ will be at most as large as the exponent p∗(γ) for the weighted
space Hγ .

Theorem 3.4. Let $(k) = Ω(ks) for some s ≥ 0. Let γ be finite-order weights of
order ω satisfying decayγ,ω > 1. Then the exponent of tractability satisfies

(25) p∗ ≥ max

{
1,max

σ∈[ω]

2min{1, s/t∗σ}
decayγ,σ −1

}
.

Proof. The proof follows the lines of the proof of Theorem 3.2. We explain here only
the proof steps that differ. For s = 0 inequality (25) becomes p∗ ≥ 1, which we know
to be true even in the one-dimensional case. So let s > 0 and let Q be of the form
(10) (but this time maxi∈[n] |vi| can be arbitrarily large). Let nj = |{vi | uj ⊆ vi}|.
There exists a b > 0 such that

[e(Q;Hγ)]
2 ≥ b2

∞∑
j=1

γ̂uj

(nj + 1)2
.

Due to our assumption $(k) = Ω(ks), there exists a constant c > 0 such that
n∑

i=1

|vi|s ≤ c
n∑

i=1

$(|vi|) = c cost(Q).

Put N := cost(Q). With Jensen’s inequality we get for t > t∗ω and some Ct > 0,
∞∑
j=1

nj =

n∑
i=1

|{j ∈ N | uj ⊆ vi}| ≤
n∑

i=1

Ct|vi|t

≤ Ct

(
n∑

i=1

|vi|s
)1/min{1,s/t}

≤ Ct(cN)1/min{1,s/t}.

(26)

This leads to
∑∞

j=1 nj ≤ S with S := �Ct(cN)1/min{1,s/t}�.
Put M := |{nj |nj �= 0}|. We have M ≤ S, and get

eγ(N) ≥ b min
M=1,2,...,S

⎛⎝ M∑
j=1

γ̂uj

(nj + 1)2
+ tailγ,ω(M)

⎞⎠1/2

.

Since decayγ,ω > 1, p∗ is finite. For any p > p∗ we have eγ(N) = O(N−1/p). Thus

we obtain Sγ̂u2S
≤ O(N−2/p). This leads to γ̂u2S

= O(S−1− 2
p min{1,s/t}), which
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implies decayγ,ω ≥ 1 + 2min{1, s/t∗ω}/p∗. Since we already know that p∗ ≥ 1, we
get

(27) p∗ ≥ max

{
1,

2min{1, s/t∗ω}
decayγ,ω −1

}
.

Now let σ ∈ [ω], and let p∗σ = p∗σ(γ
(σ)) be the exponent of tractability for the

infinite-dimensional integration problem over the space Hγ(σ) . Since γ
(σ)
u ≤ γu for

all finite u ⊂ N and decayγ,σ ≥ decayγ,ω > 1, we have, due to Remark 3.3 and (27)

(applied to the cut-off weights γ(σ)),

p∗ ≥ p∗σ ≥ max

{
1,

2min{1, s/t∗σ}
decayγ,σ −1

}
. �

It is straightforward to extend Theorem 3.4 to arbitrary weights; see Corollary
4.1.

Notice that we have on the one hand t∗1 ≤ t∗2 ≤ · · · ≤ t∗ω, and on the other hand
decayγ,1 ≥ decayγ,2 ≥ · · · ≥ decayγ,ω. Thus it is not a priori clear for which σ ∈ [ω]
the maximum in (25) is taken. As we shall see, this actually varies for different
classes of weights.

In the following three subsections, we will illustrate our lower bound for three
classes of finite-order weights. For finite-intersection weights, we have t∗ω = 1 and
the maximum in (25) is taken for σ = ω. In the case of finite-product weights, we
have t∗ω = ω and the maximum is taken for σ = 1. In both cases, (25) gives us
a lower bound superior to the lower bound in (20). For lexicographically-ordered
weights of order ω, we have t∗ω = ω and the maximum in (25) is taken for σ = ω.
In this case, (25) does not improve on (20). Nevertheless, we shall see that this
bound is sharp if decayγ,ω is fast or slow enough.

3.1.1. Lower bound for finite-intersection weights.

Definition 3.5. Let ρ ∈ N. The finite-order weights {γui
}i∈N are called finite-

intersection weights with intersection degree at most ρ if we have

(28) |{j ∈ N | ui ∩ uj �= ∅}| ≤ 1 + ρ for all i ∈ N.

Note that for finite-order weights condition (28) is equivalent to the following
condition: There exists an η ∈ N such that

(29) |{i ∈ N | k ∈ ui}| ≤ η for all k ∈ N.

Indeed, if (28) is satisfied, then (29) holds with η ≤ 1 + ρ, and if (29) is satisfied,
then (28) holds with ρ ≤ (η − 1)ω.

A subclass of the finite-intersection weights are the finite-diameter weights pro-
posed by Creutzig; see, e.g., [31]. The weights γ = {γu}u⊂N;|u|<∞ are called finite-
diameter weights if there exists an integer q ≥ 1 such that

(30) γu = 0 for all finite u ⊂ N with diam(u) ≥ q,

where diam(u) := maxk,�∈u |k − �|. By convention, diam(∅) = 0. If finite-diameter
weights satisfy (30) for some q ∈ N, then they are obviously finite-order weights of
order at most q and finite-intersection weights of intersection degree upper-bounded,
e.g., by

∑q
�=1

(
3q−2

�

)
. Note that finite-intersection weights are not necessarily finite-

diameter weights.
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Now, let γ be finite-intersection weights with intersection degree at most ρ. For
a given finite set v ⊂ N we have

|{i ∈ N | ui ⊆ v}| ≤ (1 + ρ)|v|.
Hence t∗ω ≤ 1. On the other hand, in the case where decayγ,ω < ∞, we have
necessarily an infinite sequence {uj}j∈N, implying t∗ω ≥ 1. In this case t∗ω = 1. In
any case, (25) leads for finite-intersection weights to the lower bound

(31) p∗ ≥ max

{
1,

2min{1, s}
decayγ,ω −1

}
,

which improves on the lower bound in (20), and is for ω > max{1, s} and decayγ,ω ∈
(1, 1 + 2min{1, s}) strictly better than (20). In Section 3.2 we will show that our
lower bound for finite-intersection weights is actually sharp, i.e., the right-hand side
of (31) turns out to be already the exact exponent of tractability.

3.1.2. Lower bound for lexicographically-ordered weights. To each set u ⊂ N with
|u| = � we assign the word ϕ(u) := i1i2 . . . i�, where for j ∈ [�] the number ij is the
jth-largest element of u. On the set of all finite words over the alphabet N we have
the natural lexicographical order ≺lex, where by convention the empty word should
be the first (or “smallest”) word.

Definition 3.6. We call weights γ lexicographically-ordered weights of order ω if
γ∅ = 1, γu > 0 for all u ⊂ N with |u| ≤ ω, and

ϕ(ui) ≺lex ϕ(uj) for all i, j ∈ N satisfying i < j.

This definition implies, e.g., that for all lexicographically-ordered weights γ of
order ω = 3 the ordered set system ui = ui(ω), i ∈ N0, is given by u0 = ∅,
u1 = {1}, u2 = {2}, u3 = {2, 1}, u4 = {3}, u5 = {3, 1}, u6 = {3, 2}, u7 = {3, 2, 1},
u8 = {4}, u9 = {4, 1}, u10 = {4, 2}, u11 = {4, 2, 1}, u12 = {4, 3}, u13 = {4, 3, 1},
u14 = {4, 3, 2}, u15 = {5},. . ..

For lexicographically ordered weights γ of order ω each finite v ⊂ N contains
Θ(|v|ω) subsets, thus we have t∗ω = ω. Furthermore, the corresponding cut-off
weights γ(σ) are lexicographically-ordered weights of order σ for each σ ∈ [ω]. Due
to (25), we get

(32) p∗ ≥ max

{
1,

2min{1, s/ω}
decayγ,ω −1

}
if $(k) = Ω(ks). This bound is the same as the lower bound in (20). We will prove
in Section 3.2 an upper bound for lexicographically-ordered weights that improves
on the upper bound in (20) and that demonstrates that the lower bound (32) is
sharp if decayγ,ω is large or small enough.

3.1.3. Lower bound for finite-product weights.

Definition 3.7. Let {γj}j∈N be a sequence of non-negative real numbers satisfying
γ1 ≥ γ2 ≥ . . . . With the help of this sequence we define for ω ∈ N finite-order
weights γ = {γu}u⊂N;|u|<∞ of order (at most) ω by

(33) γu =

{∏
j∈u

γj if |u| ≤ ω,

0 otherwise,
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where we again use the convention that the empty product is 1. Such weights we
want to call finite-product weights of order (at most) ω.

We may also be interested in the case of ω = ∞, which corresponds to product
weights, which were introduced by Sloan and Woźniakowski in [36]. Weights γ
are called product weights if there exists a sequence of non-negative real numbers
γ1 ≥ γ2 ≥ . . . such that γu =

∏
j∈u

γj for all finite u ⊂ N.

The next lemma shows that the maximum over all σ ∈ [ω] that appears in our
lower bound (25) is this time taken for σ = 1.

Lemma 3.8. Let γ = {γu}u⊂N;|u|<∞ be a set of finite-product weights of order ω or
of bounded product weights (which, in both cases, do not necessarily have to satisfy
condition (3)). Then

(34) decayγ,1 = decayγ,σ for all σ ∈ N.

Proof. Let σ ∈ N. Since decayγ,1 ≥ decayγ,σ ≥ 0, it remains to show that
decayγ,1 ≤ decayγ,σ. Since in the case decayγ,1 = 0 we have nothing to show, let

us assume that decayγ,1 > 0. Let p ∈ (0, decayγ,1). This implies
∑

j∈N
γ
1/p
j < ∞.

Thus we get

∑
j∈N

γ̂
1/p
uj(σ)

≤
∏
j∈N

(
1 +

(γj
3

)1/p)
= exp

⎛⎝∑
j∈N

ln

(
1 +

(γj
3

)1/p)⎞⎠
≤ exp

⎛⎝∑
j∈N

(γj
3

)1/p⎞⎠ < ∞,

where we used the estimate ln(1+ x) ≤ x, which holds for all non-negative x. This
implies γ̂uj(σ) = o(j−p), since the sequence γ̂uj(σ), j ∈ N, is monotonic decreasing.
Hence p ≤ decayγ,σ. Since we can choose p arbitrarily close to decayγ,1 (which
means, in the case decayγ,1 = ∞, arbitrarily large), we obtain decayγ,1 ≤ decayγ,σ.

�

Recall that in the case where decayγ,ω = ∞ we already know from (20) that
p∗ = 1. So let us assume that decayγ,ω < ∞, which, in particular, implies that all
γj are positive.

Then we obtain for all σ ∈ [ω] that t∗σ = σ. Let $(k) = Ω(ks) for some s ≥ 0. Due
to Lemma 3.8 and Theorem 3.4 we have for finite-product weights with decayγ,ω > 1
that the exponent of tractability satisfies

(35) p∗ ≥ max

{
1,

2min{1, s}
decayγ,1 −1

}
.

Note that (35) improves on the lower bound in (20) and is for ω > max{1, s}
and decayγ,ω ∈ (1, 1 + 2min{1, s}) strictly better than (20).

3.2. Upper bounds for finite-order weights. Now we will improve on the upper
bound in (20) with the help of an algorithm that combines a multilevel idea with
quasi-Monte Carlo integration.
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3.2.1. Description of the multilevel algorithm. Let us describe the general form of
the algorithm we want to use more precisely:

Let L0 := 0, and let L1 < L2 < L3 < . . . be natural numbers, and let

(36) v
(1)
k :=

⋃
j∈[Lk]

uj and v
(2)
k := [Lk] for k ∈ N.

In the general case we will use the sets v
(1)
k , k = 1, 2, . . .. In the special cases of

lexicographically-ordered weights and finite- or infinite-product weights, it is more
convenient to make use of the simple ordering of the corresponding set system uj ,

j ∈ N, (as defined in Section 2.1) and choose the sets v
(2)
k for k = 1, 2, . . .. In all

definitions and results that hold for both choices of the v
(i)
k , i = 1, 2, we simply

write vk. We will choose the numbers L1, L2, . . . in general such that |vk| = Θ(ak)
for some a ∈ (1,∞). (For the four different classes of weights considered in this
paper, we will choose Lk := L�ak−1�, where L ∈ N is arbitrary. A “default choice”
would be to take L = 1 and a = 2.) Let

V1 := {j ∈ N | uj ⊆ v1} and Vk := {j ∈ N | uj ⊆ vk and uj �⊆ vk−1} for k ≥ 2.

Let us furthermore define for m ∈ N,

U(m) :=
m⋃

k=1

Vk ∪ {0}.

We put

Qk(f) :=
1

nk

nk∑
j=1

fk(t
(j,k)
vk

;0),

where

fk(t
(j,k)
vk

;0) :=

{
f(t

(j,1)
v1

;0) for k = 1,

f(t
(j,k)
vk

;0)− f((t
(j,k)
vk

)vk−1
;0) for k ≥ 2,

and the numbers n1 ≥ n2 ≥ · · · ≥ nm and the points t
(1,k)
vk

, . . . , t
(nk,k)
vk

∈ [0, 1]|vk|

will be chosen later, depending on the weights γ. Define the algorithm Am via

(37) Am(f) :=
m∑

k=1

Qk(f) =
m∑

k=1

1

nk

nk∑
j=1

fk(t
(k,j)
vk

;0).

We assume in this section that $(k) = O(ks) for some s ≥ 0. Hence we have

(38) cost(Am) ≤ 2

m∑
k=1

nk$(|vk|) = O

(
m∑

k=1

nk|vk|s
)
.

We obtain from (14) and (15)

(39) [e(Am;Hγ)]
2 =

∑
j∈N0

γuj
[e(Am,uj

;H(Kuj
))]2,

where Am,uj
= Am ◦ Puj

=
∑m

k=1 Qk,uj
. Note that

e(Am,u0
;H(Ku0

)) = e(Am,u0
; span{1}) = 0,

since Am is exact on constant functions. Note furthermore that for all j ∈ N we
have

Qk,uj
(f) = 0 whenever j �∈ Vk.
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Thus we get, using (15) and (16),

[e(Am;Hγ)]
2 =

m∑
k=1

∑
j∈Vk

γuj
[e(Qk,uj

;H(Kuj
))]2 +

∑
uj �∈U(m)

γuj
[e(0;H(Kuj

))]2

=

m∑
k=1

∑
j∈Vk

γuj
[disc∗2,|uj |({t

(1,k)
uj

, . . . , t
(nk,k)
uj

})]2 +
∑

uj �∈U(m)

γuj
3−|uj |.

(40)

To get a good error bound for our approximation of I∞ by Am, we consequently

need to find for each k ∈ [m] point sets {t (1,k)vk
, . . . , t

(nk,k)
vk

} whose projections onto

the sets uj with j ∈ Vk exhibit a small L2-star discrepancy disc∗2,|uj |({t
(1,k)
uj

, . . . ,

t
(nk,k)
uj

}). The problem of finding such point sets depends heavily on the weights
we consider.

A reasonably good choice of point sets is provided by the next result. It follows
from [35, Thm. 3(A)], which relies on constructive results for weighted Korobov
spaces from [4]. We emphasize that Proposition 3.9 holds not only for finite-order,
but in fact for general weights (which do not necessarily have to satisfy condition
(3)). We will come back to this in Section 4.

Proposition 3.9. Let γ be arbitrary weights. Let k ∈ N, and let nk be a prime

number. Then there exists a point set {t (1,k)vk
, . . . , t

(nk,k)
vk

} ⊂ [0, 1]|vk| such that for
all τ ∈ [1, 2),

(41)
∑
j∈Vk

γuj
[disc∗2,|uj |({t

(1,k)
uj

, . . . , t
(nk,k)
uj

})]2 ≤ Fk,τ,γ(nk − 1)−τ ,

where, with ζ denoting the Riemann zeta function,

(42) Fk,τ,γ :=

⎛⎝∑
j∈Vk

γ
1/τ
uj (3−1/τ +Wτ )

|uj |

⎞⎠τ

and Wτ := (2π2)−1/τ (2ζ(2/τ )).

Proof. Let us consider the space Hγ∗ , where the cut-off weights γ∗ are defined by
γ∗
u = γu if u = uj for some j ∈ Vk, and γ∗

u = 0 otherwise. The space Hγ∗ can
be identified with the weighted Sobolev space of |vk|-variate functions anchored
in zero and endowed with the weights {γ∗

u}u⊆vk
; see, e.g., [35, Sect. 2]. Now [35,

Thm. 3(A)] ensures the existence of a set {t (1,k)vk
, . . . , t

(nk,k)
vk

} ⊂ [0, 1]|vk| such that

[e(Qk;Hγ∗)]2 ≤ F̃k,τ,γ(nk − 1)−τ , where

F̃k,τ,γ =

⎛⎜⎝∑
u⊆vk

W |u|
τ

⎛⎝ ∑
j∈Vk;u⊆uj

γuj
3|u|−|uj |

⎞⎠1/τ
⎞⎟⎠

τ

.

Due to (40) we have∑
j∈Vk

γuj
[disc∗2,|uj |({t

(1,k)
uj

, . . . , t
(nk,k)
uj

})]2 = [e(Qk;Hγ∗)]2.
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Using Jensen’s inequality, we obtain

F̃k,τ,γ ≤

⎛⎝∑
u⊆vk

W |u|
τ

∑
j∈Vk;u⊆uj

γ
1/τ
uj

3(|u|−|uj |)/τ

⎞⎠τ

=

⎛⎝∑
j∈Vk

γ
1/τ
uj

3−|uj |/τ
∑
u⊆uj

W |u|
τ 3|u|/τ

⎞⎠τ

.

Now we have
∑

u⊆uj
W

|u|
τ 3|u|/τ = (1 + 31/τWτ )

|uj |, which concludes the proof. �

As demonstrated in [35], shifted rank-1 lattice rules, whose generators can be
calculated efficiently by using the component-by-component (CBC) algorithm, sat-
isfy (41). Unfortunately, these point sets are not fully constructive, since it is not
known how to calculate a suitable shift Δ ∈ [0, 1)|vk| efficiently.

We will use Proposition 3.9 for lexicographically-ordered weights, and for finite
and infinite-product weights. For finite-intersection weights, however, we construct
point sets explicitly, whose projections exhibit a discrepancy significantly smaller
than the discrepancy guaranteed in Proposition 3.9; see Proposition 3.11.

3.2.2. Upper bounds for finite-intersection weights. Let γ be finite-intersection
weights of finite order ω. In this case we can construct point sets or sequences
of sample points that enable our algorithm Am to provide a sharp upper bound

for the exponent of tractability. Here, we take vk = v
(1)
k and Lk := L�ak−1� for

k = 1, . . . ,m, where L ∈ N and a ∈ (1,∞) are fixed.
Our construction of optimal point sets is based on the following result.

Lemma 3.10. Let γ be finite-intersection weights of finite order ω. Let η ∈ N

be such that the set system uj = uj(ω), j ∈ N, satisfies (29). Then there exists
a mapping φ : N → [η(ω − 1) + 1] such that for all j ∈ N the restriction φ|uj

is
injective.

Proof. We will define φ inductively: Put φ(1) = 1. Let now k ≥ 2 and let us assume
that we have defined φ(�) for � = 1, . . . , k− 1 such that φ|uj∩[k−1] is injective for all
j ∈ N and takes only values in [η(ω − 1) + 1]. For k define Uk := {� ∈ [k− 1] | ∃j ∈
N : {�, k} ⊆ uj}. Since k is contained in at most η sets uj , and since |uj | ≤ ω for all
j ∈ N, we see that |Uk| ≤ η(ω − 1). Thus φ(k) := min([η(ω − 1) + 1] \ φ(Uk)) is a
well-defined number in [η(ω−1)+1]. Hence we have defined φ on [k], and it is easy
to see that φ|uj∩[k] is injective for every j ∈ N: If k �∈ uj , then φ|uj∩[k] = φ|uj∩[k−1]

is injective due to our induction hypothesis. If k ∈ uj , then φ|uj∩[k−1] is injective
due to our induction hypothesis. Furthermore, φ(k) �∈ φ(Uk), which in particular
implies that φ(k) �∈ φ(uj ∩ [k − 1]) ⊆ φ(Uk). �
Proposition 3.11. Let γ be finite-intersection weights with finite order ω. Let
η ∈ N be such that the set system uj = uj(ω), j ∈ N, satisfies (29). Then there

exists a sequence Z∞ = (z
(i)
∞ )i∈N in [0, 1]N and a positive constant Cη,ω such that

disc∗2,|uj |({z
(1)
∞,uj

, . . . , z
(n)
∞,uj

}) ≤ Cη,ωn
−1 ln(n)η(ω−1)+1 for all j, n ∈ N.

Proof. In dimension η(ω−1)+1 we find some suitable constant Cη,ω > 0 such that

there exists a sequence Z = (z(i))i∈N in [0, 1]η(ω−1)+1 satisfying

(43) disc∗∞,η(ω−1)+1({z(1), . . . , z(n)}) ≤ Cη,ωn
−1 ln(n)η(ω−1)+1 for all n ∈ N.
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Indeed, efficiently computable low-discrepancy sequences often used in applications
such as, e.g., the Faure, Halton, Niederreiter, Niederreiter-Xing or Sobol’ sequence,
achieve the convergence rate in (43); see, e.g., the papers [7, 14, 25, 27, 37] or the
monograph [26].

From Z we obtain an infinite-dimensional sequence Z∞ = (z
(i)
∞ )i∈N by defining

the νth component of z
(i)
∞ via z

(i)
∞,ν = z

(i)
φ(ν) for all i, ν ∈ N, where the mapping φ is

as in Lemma 3.10. Let j, n ∈ N. Since φ|uj
is injective, we have

disc∗2,|uj |({z
(1)
∞,uj

, . . . , z
(n)
∞,uj

}) ≤ disc∗∞,|uj |({z
(1)
∞,uj

, . . . , z
(n)
∞,uj

})

= disc∗∞,|uj |({z
(1)
φ(uj)

, . . . , z
(n)
φ(uj)

}) ≤ disc∗∞,η(ω−1)+1({z(1), . . . , z(n)})

≤ Cη,ωn
−1 ln(n)η(ω−1)+1. �

For any nk, k = 1, 2, . . ., we can construct points t
(1,k)
vk

, . . . , t
(nk,k)
vk

explicitly such
that

(44) disc∗2,|uj |({t
(1,k)
uj

, . . . , t
(nk,k)
uj

}) ≤ Cη,ωn
−1
k ln(nk)

η(ω−1)+1 for all j ∈ Vk

by simply choosing a sequence Z∞ as in Proposition 3.11 and t
(i,k)
vk

:= z
(i)
∞,vk

,
i = 1, . . . , nk. We can use the same sequence Z∞ for all values m and k, regardless
of the special value of nk, k = 1, . . . ,m. With this choice of sample points we get
from (40) the error estimate

(45) [e(Am;Hγ)]
2 ≤ Cη,ω,δ

m∑
k=1

(
Lk∑

j=Lk−1+1

γuj

)
n
2(δ−1)
k + tailγ,ω(Lm)

for arbitrarily small δ ∈ (0, 1) with a suitable constant Cη,ω,δ, depending only on δ,
η, and ω. Notice that we implicitly used n1 ≥ n2 ≥ · · · ≥ nm to deduce (45), since
it might be that for Lk−1 < j ≤ Lk we have uj ⊆ v� for some � < k.

Now let us try to find values of nk, k = 1, . . . ,m, which for given cost (essentially)
minimize the right-hand side of (45). Note that here η−1Lk ≤ |vk| ≤ ωLk, i.e.,
|vk| = Θ(Lk). Therefore (38) gives us

cost(Am) = O

(
m∑

k=1

nkL
s
k

)
.

Put

σk :=

Lk∑
j=Lk−1+1

γuj
and M :=

m∑
k=1

Ls
k.

For a given S > Ls let m be such that S ≥ M . We want to find the minimum
x∗ = (x∗

1, . . . , x
∗
m) of the function

F (x) =

m∑
k=1

σkx
2(δ−1)
k subject to the constraint

m∑
k=1

xkL
s
k = S.

Due to Lagrange’s multiplier theorem there exists a λ ∈ R such that gradF (x∗) =
λ(Ls

1, . . . , L
s
m). This relation and the constraint imply that the minimum x∗ is

given by

x∗
k = Cσ

1
3−2δ

k L
− s

3−2δ

k , where C = S

(
m∑

k=1

σ
1

3−2δ

k L
2(1−δ)s
3−2δ

k

)−1

.
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For k = 1, 2, . . . ,m we choose nk := �x∗
k�. This leads to

cost(Am) = O

(
m∑

k=1

nkL
s
k

)
= O(S +M) = O(S).

Now we can estimate the different error terms that bound [e(Am;Hγ)]
2 in (45):

First we obtain

(46)
m∑

k=1

σkn
2(δ−1)
k ≤ S2(δ−1)

(
m∑

k=1

σ
1

3−2δ

k L
2(1−δ)s
3−2δ

k

)3−2δ

.

For p ∈ (1, decayγ,ω) we have γuj
= O(j−p), and consequently,

σk = O

⎛⎝ Lk∑
j=Lk−1+1

j−p

⎞⎠ =

{
O(L1−p

k ) if k ≥ 2,

O(1) if k = 1.

This implies
m∑

k=1

σkn
2(δ−1)
k = O

(
S2(δ−1)

(
1 + L2(1−δ)s+1−p

m

))
.

Second, we obtain

tailγ,ω(Lm) = O(L1−p
m ).

Thus we have altogether,

[e(Am;Hγ)]
2 = O

(
S2(δ−1)

(
1 + L2(1−δ)s+1−p

m

)
+ L1−p

m

)
.

Let N := cost(Am). Note that M = Θ(Ls
m), and that S ≥ M implies S = Ω(Ls

m).
Case 1: decayγ,ω −1 ≥ 2s. Then we have 2(1−δ)s+1−p ≤ 0 for p close enough

to decayγ,ω. Choosing m in such a way that S = Θ(L
p−1

2(1−δ)
m ), we get

eγ(N) ≤ e(Am;Hγ) = O(L
1−p
2

m ) = O(S−(1−δ)) = O(N−(1−δ)).

Since δ can be chosen arbitrarily small, the tractability exponent p∗ is at most 1.
Case 2: decayγ,ω −1 < 2s. Then we may choose δ small enough to obtain

2(1− δ)s+ 1− p ≥ 0. Choosing m in such a way that S = Θ(Ls
m), we get

eγ(N) ≤ e(Am;Hγ) = O(L
1−p
2

m ) = O(S−p−1
2s ) = O(N− p−1

2s ).

Since p can be arbitrarily close to decayγ,ω, we get, in this case,

p∗ ≤ 2s

decayγ,ω −1
.

If we have s > t∗ω = 1 in case 2, our specific choice of L1, L2, . . . does not allow
our algorithm to match the lower bound. But in this case the algorithm from [22,
Thm. 5(a)], which uses only sample points with at most ω coordinates different
from zero, proves

(47) p∗ ≤ max

{
1,

2

decayγ,ω −1

}
;

see also Theorem 3.1.
Altogether we proved the following theorem.
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Theorem 3.12. Let $(k) = O(ks) for some s ≥ 0. Let the finite-intersection
weights γ of order ω satisfy decayγ,ω > 1. Then the tractability exponent satisfies

(48) p∗ ≤ max

{
1,

2min{1, s}
decayγ,ω −1

}
.

In particular, if $(k) = Θ(ks), we have

(49) p∗ = max

{
1,

2min{1, s}
decayγ,ω −1

}
.

Remark 3.13. Note that finite-order weights of order ω = 1 are (obviously) finite-
intersection weights with intersection degree ρ = 0. For them condition (29) holds
for η = 1. In this case we may use our multilevel algorithm together with a
sequence Z∞ in [0, 1]N, as described in Proposition 3.11. If we do not insist (on the
practically very useful feature) that the quasi-Monte Carlo points we use for our
multilevel algorithm stem from a sequence, we may simply use the point sets

{t (1,k)vk
, . . . , t

(nk,k)
vk

} ⊂ [0, 1]|vk|, where t
(�,k)
vk,j

=
2�− 1

2nk
for j ∈ Vk, � = 1, . . . , nk,

which leads to

disc∗2,|uj |({t
(1,k)
uj

, . . . , t
(nk,k)
uj

}) = 1√
12

n−1
k for all j ∈ Vk and all k ∈ [m].

(Notice that |uj | = 1 for all j ∈ N.) In the case $(k) = Θ(ks) we know the exact
exponent of finite-order weights γ of order ω = 1 and it is given by (49).

3.2.3. Upper bounds for lexicographically-ordered weights. Let γ be lexicographically-
ordered weights of finite order ω. Let Lk := L�ak−1� for k ∈ N, where L ∈ N

and a ∈ (1,∞) are fixed. Here we use our algorithm Am with prime numbers

n1 ≥ n2 ≥ · · · ≥ nm and the corresponding sample points t
(1,k)
vk

, . . . , t
(nk,k)
vk

,

k = 1, . . . ,m, from Proposition 3.9, where vk = v
(2)
k = [Lk]. We define

R0 := 0 and Rk :=

ω∑
σ=1

(
Lk

σ

)
for k = 1, . . . ,m.

We have Vk = {Rk−1 +1, Rk−1 +2, . . . , Rk} for all k ≥ 1. Due to (40) and (41) we
get for arbitrary τ ∈ [1,min{2, decayγ,ω}) the error estimate

(50) [e(Am;Hγ)]
2 ≤

m∑
k=1

Fk,τ,γ(nk − 1)−τ + tailγ,ω (Rm) .

Furthermore,

Fk,τ,γ =

⎛⎝∑
j∈Vk

γ
1/τ
uj

(3−1/τ +Wτ )
|uj |

⎞⎠τ

≤ max
{
1, (3−1/τ +Wτ )

ωτ
}⎛⎝∑

j∈Vk

γ
1/τ
uj

⎞⎠τ

=: σ̂k.

As done in the case of finite-intersection weights, let us try to find for given cost
numbers nk, k = 1, . . . ,m, which essentially minimize our error estimate. Again,
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let M :=
∑m

k=1 L
s
k. For a given S > 2Ls let m be such that S ≥ 2M . Then the

minimum x∗ = (x∗
1, . . . , x

∗
m) of the function

F (x) =

m∑
k=1

σ̂k(xk − 1)−τ subject to the constraint

m∑
k=1

xkL
s
k = S

is given by

x∗
k = Cσ̂

1
τ+1

k L
− s

τ+1

k + 1, where C = (S −M)

(
m∑

k=1

σ̂
1

τ+1

k L
sτ

τ+1

k

)−1

.

For k = 1, 2, . . . ,m we choose nk to be the smallest prime greater than or equal to
x∗
k. It is well known that for any n ∈ N there exists a prime number p satisfying

n ≤ p ≤ 2n. Thus our choice of nk gives us �x∗
k� ≤ nk ≤ 2�x∗

k�. This leads to

N := cost(Am) = O

(
m∑

k=1

nkL
s
k

)
= O(2(S +M)) = O(S).

Now let us estimate the different error terms in the bound of [e(Am;Hγ)]
2: First

we obtain
m∑

k=1

σ̂k(nk − 1)−τ ≤ (S −M)−τ

(
m∑

k=1

σ̂
1

τ+1

k L
sτ

τ+1

k

)τ+1

.

For p ∈ (τ, decayγ,ω) we have γuj
= O(j−p). Since Rk = Θ(Lω

k ) for all k, we get

σ̂k = O

⎛⎝ Rk∑
j=Rk−1+1

j−p/τ

⎞⎠τ

=

{
O(L

ω(τ−p)
k ) if k ≥ 2,

O(1) if k = 1.

This implies
m∑

k=1

σ̂k(nk − 1)−τ = O
(
S−τ

(
1 + Lω(τ−p)+sτ

m

))
.

Second, we obtain tailγ,ω (Rm) = O(L
ω(1−p)
m ). Thus we have altogether

[e(Am;Hγ)]
2 = O

(
S−τ

(
1 + Lτ(ω+s)−pω

m

)
+ Lω(1−p)

m

)
.

Case 1: decayγ,ω > 2(1+s/ω). Choose p large enough to ensure p ≥ 2(1+s/ω).
Then we get for all τ ∈ [1, 2),

[e(Am;Hγ)]
2 = O(S−τ + Lω(1−p)

m ).

Since ω(p − 1)/τ > s, we can choose m in such a way that S = Θ(L
ω(p−1)/τ
m ),

implying

eγ(N) ≤ e(Am;Hγ) = O(S−τ/2) = O(N−τ/2).

By taking τ arbitrarily close to 2, we get the best possible exponent of tractability

(51) p∗ = 1.

Case 2: decayγ,ω ≤ 2(1 + s/ω). Hence p ∈ (1, 2(1 + s/ω)). Let r ≥ s, and let m
be such that S = Θ(Lr

m). Then

[e(Am;Hγ)]
2 = O(S−μ), where μ := min

{
ω(p− 1)

r
, τ, τ +

pω − τ (ω + s)

r

}
.
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Choosing r ≥ ω+s leads to μ ≤ (p−1)/(1+s/ω), and, for p tending to decayγ,ω, we
cannot get an estimate for the exponent of tractability better than p∗ ≤
2(1+s/ω)/(decayγ,ω −1). As we will see, we can do better if we assume r ∈ [s, s+ω).

The value of τ that maximizes μ for r ∈ [s, s + ω) is τ = pω/(ω + s). Here we
have pω/(ω + s) < 2, so for s > 0 the optimal choice of τ satisfying the constraint
τ ∈ [1,min{2, p}) is given by

τ = max

{
1,

pω

ω + s

}
,

and for s = 0 we may choose τ arbitrarily close to p.
Subcase a: decayγ,ω ≤ 1 + s/ω. Then we have p < 1 + s/ω and consequently

τ = 1. Hence

μ = min

{
ω(p− 1)

r
, 1 +

pω − (ω + s)

r

}
.

The choice r = s maximizes μ and leads to S = Θ(Ls
m) and

eγ(N) ≤ e(Am;Hγ) = O(S−ω(p−1)
2s ) = O(N−ω(p−1)

2s ).

Choosing p arbitrarily close to decayγ,ω leads to

(52) p∗ ≤ 2s/ω

decayγ,ω −1
.

Subcase b: decayγ,ω > 1 + s/ω. Then we may choose p ≥ 1 + s/ω and τ =
pω/(ω + s). (Only in the case s = 0 we have to choose τ = p− ε, ε > 0 arbitrarily
small. But we do not discuss this case in detail, since it is obvious how the following
argument has to be modified.) Hence

μ = min

{
ω(p− 1)

r
,

pω

ω + s

}
.

The choice r ∈ [s, (ω + s)(p− 1)/p] leads to μ = pω/(ω + s) and

eγ(N) ≤ e(Am;Hγ) = O(S− pω
2(ω+s) ) = O(N− pω

2(ω+s) ).

Choosing p arbitrarily close to decayγ,ω leads to

(53) p∗ ≤ 2(1 + s/ω)

decayγ,ω
.

Since the algorithm used in [22, Thm. 5(a)] proves

(54) p∗ ≤ max

{
1,

2

decayγ,ω −1

}
,

we established altogether the following theorem.

Theorem 3.14. Let $(k) = O(ks) for some s ≥ 0. Let the lexicographically-ordered
weights γ of finite order ω satisfy decayγ,ω > 1. Then the tractability exponent
satisfies

(55) p∗ ≤ max

{
1, 2min

{
max

{
s/ω

decayγ,ω −1
,
1 + s/ω

decayγ,ω

}
,

1

decayγ,ω −1

}}
.

In particular, we have for 1 < decayγ,ω ≤ 1 + s/ω,

p∗ ≤ max

{
1,

2min{1, s/ω}
decayγ,ω −1

}
,
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for 1 + s/ω < decayγ,ω < 2(1 + s/ω),

p∗ ≤ max

{
1, 2min

{
1

decayγ,ω −1
,
1 + s/ω

decayγ,ω

}}
,

and for 2(1 + s/ω) ≤ decayγ,ω,

p∗ = 1.

If $(k) = Θ(ks) the lower bound (32) always matches the upper bound (55), except
when s < ω and 1 + s/ω < decayγ,ω < min{3, 2(1 + s/ω)}.

3.2.4. Upper bounds for finite-product weights. Let γ be finite-product weights of
finite order ω. Let Lk := L�ak−1� for k ∈ N, where L ∈ N and a ∈ (1,∞) are
fixed. As for lexicographically-ordered weights, we use our algorithm Am with the

sample points t
(1,k)
vk

, . . . , t
(nk,k)
vk

from Proposition 3.9, where vk = v
(2)
k = [Lk] for

k = 1, . . . ,m, and get for arbitrary τ ∈ [1,min{2, decayγ,1}) the error estimate
(50).

In the next lemma we present an estimate for Fk,τ,γ , which does not only hold
for finite-product weights, but also for (infinite-)product weights.

Lemma 3.15. Let γ be finite-product or product weights with decayγ,1 > 1. Then

Fk,τ,γ = O(σ̃k), where σ̃k :=

⎛⎝ Lk∑
j=Lk−1+1

γ
1/τ
j

⎞⎠τ

.

Proof. Put W ∗
τ := 3−1/τ +Wτ . Then

Fk,τ,γ ≤

⎡⎣ Lk∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)
−

Lk−1∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)⎤⎦τ

=

⎡⎣Lk−1∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)⎛⎝ Lk∏
j=Lk−1+1

(
1 + γ

1/τ
j W ∗

τ

)
− 1

⎞⎠⎤⎦τ

.

Now

Lk∏
j=Lk−1+1

(
1 + γ

1/τ
j W ∗

τ

)
= exp

⎛⎝ Lk∑
j=Lk−1+1

ln(1 + γ
1/τ
j W ∗

τ )

⎞⎠
≤ exp

⎛⎝W ∗
τ

Lk∑
j=Lk−1+1

γ
1/τ
j

⎞⎠ ,

implying

Lk∏
j=Lk−1+1

(
1 + γ

1/τ
j W ∗

τ

)
− 1 ≤ W ∗

τ

⎛⎝ Lk∑
j=Lk−1+1

γ
1/τ
j

⎞⎠ (1 + o(1)) as k → ∞.

Since τ < decayγ,1, we have

Lk−1∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)
≤

∞∏
j=1

(
1 + γ

1/τ
j W ∗

τ

)
< ∞. �
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Now the following theorem can easily be verified by following the proof of The-
orem 3.14, where one just has to substitute ω by 1, Rk by Lk, and σ̂k by σ̃k for
k = 1, . . . ,m.

Theorem 3.16. Let $(k) = O(ks) for some s ≥ 0. Let the finite-product weights
γ of finite order ω satisfy decayγ,1 > 1. Then the tractability exponent satisfies

(56) p∗ ≤ max

{
1, 2min

{
max

{
s

decayγ,1 −1
,

1 + s

decayγ,1

}
,

1

decayγ,1 −1

}}
.

In particular, we have for 1 < decayγ,1 ≤ 1 + s,

p∗ ≤ max

{
1,

2min{1, s}
decayγ,1 −1

}
,

for 1 + s < decayγ,1 < 2(1 + s),

p∗ ≤ max

{
1, 2min

{
1

decayγ,1 −1
,

1 + s

decayγ,1

}}
,

and for 2(1 + s) ≤ decayγ,1,

p∗ = 1.

If $(k) = Θ(ks) the lower bound (35) always matches the upper bound (56), except
when s < 1 and 1 + s < decayγ,1 < min{3, 2(1 + s)}.

4. From finite-order weights to arbitrary weights

In this section we apply the results and methods we provided in the case of finite-
order weights to obtain results for arbitrary weights, in particular, for infinite-order
weights. As in the previous sections, we always assume that the weights γ satisfy
(3) and that there exists at least one finite, non-empty set u ⊂ N with γu > 0.

4.1. Lower bounds for arbitrary weights. Let γ be an arbitrary set of weights,
and let σ ∈ N. As explained in Remark 3.3, the infinite-dimensional integration
problem is not harder for the cut-off weights γ(σ) than for the original weights γ.
Thus any lower bound on the exponent of tractability p∗σ = p∗(γ(σ)) corresponding
to the cut-off weights γ(σ) holds also for the exponent of tractability p∗ = p∗(γ)
for the original weights γ. Since cut-off weights γ(σ) are in particular finite-order
weights of order at most σ, we get from Theorem 3.4 immediately the following
result.

Corollary 4.1. Let γ be arbitrary weights, and let $(k) = Ω(ks) for some s ≥ 0.
Let the integration problem I∞ be tractable.

A lower bound for the exponent of tractability p∗ is then given by

(57) p∗ ≥ max

{
1, sup

σ∈N

2min{1, s/t∗σ}
decayγ,σ −1

}
.
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4.1.1. Lower bound for product weights. Product weights are probably the most
extensively studied type of weights in the literature of multivariate problems. If
γ are product weights, then the cut-off weights γ(σ), σ ∈ N, are obviously finite-
product weights of order at most σ.

Let us assume decayγ,1 < ∞, which in particular means that all γj are positive.
This implies t∗σ = σ for all σ ∈ N. Now let $(k) = Ω(ks) for some s ≥ 0. Then we
get from Lemma 3.8 and Corollary 4.1 the following lower bound for the exponent
of tractability p∗ for product weights γ:

(58) p∗ ≥ max

{
1,

2min{1, s}
decayγ,1 −1

}
.

This lower bound for product weights was provided in [22, Sect. 3.3] for the case
where γj = j−β for arbitrary β > 1. The point we want to make here, is that this
non-trivial result already follows from our results in the easier setting of finite-order
weights. Note that in contrast the lower bound (58) for (infinite-)product weights
does not imply our bound (35) for finite-product weights.

4.2. Upper bounds for arbitrary weights. Our algorithm Am can in general be
used for arbitrary weights to provide upper bounds for the exponent of tractability.

For arbitrary weights γ we may use the sets vk = v
(1)
k =

⋃
j∈[Lk]

uj in (36). If s is

not too large, the numbers L1, L2, L3, . . . should be chosen in such a way that |vk|
grows exponentially, i.e., |vk| = Θ(ak) for some a ∈ (1,∞). For k = 1, 2, . . . ,m the

points {t(1,k)vk
, . . . , t

(nk,k)
vk

} can always be chosen as in Proposition 3.9, which holds
not only for finite-order weights, but also for arbitrary weights.

Here we confine ourselves to provide an explicit error bound in the case of product
weights.

4.2.1. Upper bound for product weights. In this section we can use almost directly
our results from the case of finite-product weights. The observation we have to
make is the following:

In the whole derivation of Theorem 3.16 the only occasion where we benefited
from the fact that we were working with finite-product weights was that we used
the bound

(59) p∗ ≤ max

{
1,

2

decayγ,1 −1

}
,

from [22, Thm. 5(a)] (see also Theorem 3.1). The algorithm used there to establish
(59) relies crucially on the fact that the weights under consideration are finite-
order weights. Thus we cannot expect (59) to hold. But our algorithm with the
numbers Lk = L�ak−1� for some L ∈ N and a ∈ (1,∞), the sets of coordinates

vk = v
(2)
k = [Lk], and the point sets {t(1,k)vk

, . . . , t
(nk,k)
vk

} from Proposition 3.9 leads
also in the case of (infinite-)product weights to the estimates (51), (52), and (53)
with ω = 1.

Altogether, we get the following result.

Theorem 4.2. Let $(k) = O(ks) for some s ≥ 0. Let the product weights γ satisfy
decayγ,1 > 1. Then the tractability exponent satisfies

(60) p∗ ≤ max

{
1,

2s

decayγ,1 −1
,
2(1 + s)

decayγ,1

}
.
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In particular, we have for 1 < decayγ,1 ≤ 1 + s,

p∗ ≤ 2s

decayγ,1 −1
,

for 1 + s < decayγ,1 < 2(1 + s),

p∗ ≤ 2(1 + s)

decayγ,1
,

and for 2(1 + s) ≤ decayγ,1,

p∗ = 1.

If $(k) = Θ(ks) the lower bound (58) matches the upper bound (60) in the case
where decayγ,1 ≥ 2(1 + s), and in the case where s ≤ 1 and 1 + s ≥ decayγ,1.

Remark 4.3. Let us compare the result of our algorithm to the results of the al-
gorithms used in [22]. The first algorithm studied there in Section 3.1 is a direct
quasi-Monte Carlo approach called fixed dimension algorithm. Our algorithm re-
duces to the fixed dimension algorithm if for a required error guarantee ε we choose
m = 1 and put L1 = d(ε), where d(ε) tends to infinity as ε approaches zero; see
[22, Sect. 3.1] for details.

If decayγ,1 > 1, the fixed dimension algorithm leads, for product weights, to the
following bound on the exponent of tractability:

(61) p∗ ≤ max

{
1,

2

decayγ,1

}
+

2s

decayγ,1 −1
.

If s = 0 or if decayγ,1 = ∞ this is the same bound as provided by our algorithm.
If s > 0 and decayγ,1 < ∞, then (60) is strictly smaller than (61).

The second algorithm studied in [22, Sect. 3.2] is called changing dimension
algorithm.

If decayγ,1 > 1, the changing dimension algorithm leads, for product weights, to
the following bound on the exponent of tractability:

(62) p∗ ≤ 1 +
2

decayγ,1 −1
.

In the case where decayγ,1 ≥ 2(1+s) our algorithm leads to the best possible expo-
nent 1, while the changing dimension algorithm does only in the case decayγ,1 = ∞.

In the case 2(1 + s) > decayγ,1 > 1 + s our algorithm leads to a better result
than the changing dimension algorithm if 2 ≥ s. If 2 < s, our algorithm is better
as long as decayγ,1 > δ(s), where

δ(s) :=
1

2
+ s+

√
1

4
+ (s− 2)(1 + s).

If 1 + s < decayγ,1 < δ(s), then the changing dimension algorithm is better (which
can, as already mentioned, only happen if s > 2).

In the case 1+ s ≥ decayγ,1 > 1, our algorithm leads to a better result than the
changing dimension algorithm for decayγ,1 > 2s− 1, while the changing algorithm
leads to a better result if decayγ,1 < 2s− 1, which can only occur if s > 1.

This means, in particular, that for s ≤ 1 our algorithm leads in any case to a
better or equal result than the changing dimension algorithm.
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Remark 4.4. More restrictive models of varying costs of function evaluations, called
fixed and variable subspace sampling, are studied in [3, 18, 24, 28, 29]. A discussion
of both cost models can be found, e.g., in [24, Sect. 2]. We restate the variable
subspace sampling model, which is similar to the (more generous) cost model from
[22]. For subspaces

X1:d := {x ∈ [0, 1]N |xd+1 = xd+2 = · · · = 0}
of [0, 1]N, the cost of an algorithm Q of the form (10) in the variable subspace model
is

costvar(Q) :=
n∑

i=1

[
min{d ∈ N | (x(i)

vi
; 0) ∈ X1:d}

]s
for some s ∈ [0,∞). Let us assume that our cost function $ satisfies $(k) = Θ(ks).
Then

(63) cost(Q) = O(costvar(Q)).

In the variable subspace sampling model, we define the ε-complexity compvar(ε;Hγ)
and the Nth minimal worst case error evarγ (N) by (17) and (19), where we simply
substitute cost(Q) by costvar(Q). Analogously, we define (polynomial) tractability
and the exponent of tractability pvar in the variable subspace model. Due to (63)
we have

(64) p∗ ≤ pvar.

Thus our lower bounds for the exponent of tractability in the cost model from [22]
are also valid in the variable subspace sampling cost model. On the other hand,
upper bounds for the exponent of tractability in the variable subspace sampling
cost model are valid in the cost model from [22]. But it is a priori not clear whether
an upper bound in the cost model from [22] stays valid in the variable subspace
sampling cost model.

This is indeed the case for our upper bounds achieved with the help of the
multilevel algorithm. This is easy to see for lexicographically-ordered weights, finite-

product and product weights. There we use the coordinate sets v
(2)
k = [Lk], k =

1, 2, . . . for our multilevel algorithm Am and therefore the cost of Am is of the
same order in both models; see also (38). For finite-intersection weights, this is not
obvious and indeed an a-priori re-ordering of the coordinates might be necessary.
So if we use a bijection ζ : N → N satisfying ζ(u1) = {1, . . . , |u1|} and

ζ

(
uj \

j−1⋃
i=1

ui

)
=

{∣∣∣∣∣
j−1⋃
i=1

ui

∣∣∣∣∣+ 1, . . . ,

∣∣∣∣∣
j⋃

i=1

ui

∣∣∣∣∣
}

for j = 2, 3, . . .,

and permute the coordinates by using ζ, then our algorithm Am with coordinate

sets ṽ
(1)
k := ζ(v

(1)
k ) =

⋃
j∈[Lk]

ζ(uj), k = 1, 2, . . ., has also cost of the same order

in both cost models (since ζ(v
(1)
k ) = [|v(1)k |]). Observe that we can do the same

a-priori re-ordering of coordinates for arbitrary weights and then use our algorithm

Am with the coordinate sets ṽ
(1)
k , k = 1, 2, . . ., defined as above. In this sense all

upper bounds for the exponent of tractability achieved by our multilevel algorithm
for the cost model from [22] will also hold for the variable subspace sampling cost
model.

But the cost of the algorithm from [22, Thm. 5(a)] will, in general, differ reason-
ably in both models. Therefore we cannot claim that the upper bound in (20) holds
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also in the variable subspace sampling cost model. Thus, to hold in the variable
subspace sampling model, the results in Theorems 3.12, 3.14, and 3.16 have to be
modified accordingly, while the results from Theorem 4.2 hold without modification.

As already mentioned, the upper bound in Theorem 4.2 has been proved inde-
pendently from our work in the recent paper [29] for the varying subspace sampling
cost model (and thus, in particular, for the cost model from [22]). In [29] the
authors consider a more general reproducing kernel Hilbert space setting than we
consider in this paper, but study solely product weights. The multilevel algorithm
proposed in [29] for infinite-dimensional integration over Hγ with product weights
γ is similar to our multilevel algorithm; the main difference is that their algorithm
uses quasi-Monte Carlo points proposed in [19], while our algorithm uses the points
from Proposition 3.9. Although the multilevel approaches are similar, the analysis
which establishes the upper bounds for pvar in [29] is quite different from ours and
relies on auxiliary weights γ′ with γ′

u ≥ γu for all finite u ⊂ N.

Remark 4.5. After the submission of this article, a new paper on infinite-dimensional
integration on (quasi-)reproducing kernel Hilbert spaces was completed [33]. We
briefly state the results relevant for the setting studied in our paper. The authors
showed that in the cost model from [22] for cost functions $(k) = O(ks) the bound
on the exponent of tractability (59) holds also for product weights. This bound is
sharp for s ≥ 1 and $(k) = Θ(ks), as can be seen from (58). The proof uses chang-
ing dimension algorithms as in [22] (see Remark 4.3) and a refined analysis. The
results from [33] cannot be transferred directly to the variable subspace sampling
model, since the cost of these changing dimension algorithms will increase reason-
ably if one switches from the cost model in [22] to the variable subspace sampling
model (see Remark 4.4). As explained in Remark 4.4, this is not the case for the
multilevel algorithms presented in [29] and in our paper.
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