Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Numerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two


Authors: Nathan C. Ryan, Nils-Peter Skoruppa and Fredrik Strömberg
Journal: Math. Comp. 81 (2012), 2361-2376
MSC (2010): Primary 11F46, 11F66; Secondary 11F27, 11F50
DOI: https://doi.org/10.1090/S0025-5718-2012-02584-1
Published electronically: February 20, 2012
MathSciNet review: 2945160
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Rankin convolution type Dirichlet series $ D_{F,G}(s)$ of Siegel modular forms $ F$ and $ G$ of degree two, which was introduced by Kohnen and the second author, is computed numerically for various $ F$ and $ G$. In particular, we prove that the series $ D_{F,G}(s)$, which shares the same functional equation and analytic behavior with the spinor $ L$-functions of eigenforms of the same weight are not linear combinations of those. In order to conduct these experiments a numerical method to compute the Petersson scalar products of Jacobi Forms is developed and discussed in detail.


References [Enhancements On Off] (What's this?)

  • 1. Götz Alefeld and Jürgen Herzberger, Introduction to interval computations, Computer Science and Applied Mathematics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983, Translated from the German by Jon Rokne. MR 733988 (85d:65001)
  • 2. A. N. Andrianov, Euler products that correspond to Siegel's modular forms of genus $ 2$, Uspehi Mat. Nauk 29 (1974), no. 3 (177), 43-110. MR 0432552 (55:5540)
  • 3. Jan H. Bruinier, Borcherds products on O(2, $ l$) and Chern classes of Heegner divisors, Lecture Notes in Mathematics, vol. 1780, Springer-Verlag, Berlin, 2002. MR 1903920 (2003h:11052)
  • 4. Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston Inc., Boston, MA, 1985. MR 781735 (86j:11043)
  • 5. S. A. Evdokimov, Characterization of the Maass space of Siegel modular cusp forms of genus $ 2$, Mat. Sb. (N.S.) 112(154) (1980), no. 1(5), 133-142, 144. MR 575936 (82a:10028)
  • 6. David W. Farmer, Nathan C. Ryan, and Ralf Schmidt, Finding and verifying the functional equation for high degree Euler-products, Pac. J. Math. (To appear).
  • 7. Carl-Friedrich Gauss, Summatio quarundam serierum singularium, Com Soc. Rec. Sci. Göttingensis Rec. 1 (1811).
  • 8. B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $ L$-series. II, Math. Ann. 278 (1987), no. 1-4, 497-562. MR 909238 (89i:11069)
  • 9. Özlem Imamoglu and Yves Martin, On a Rankin-Selberg convolution of two variables for Siegel modular forms, Forum Math. 15 (2003), no. 4, 565-589. MR 1978335 (2004k:11068)
  • 10. W. Kohnen and N.-P. Skoruppa, A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math. 95 (1989), no. 3, 541-558. MR 979364 (90b:11050)
  • 11. Nathan C. Ryan and N.-P. Skoruppa, Sage-add-ons: A Sage package for computing Siegel modular forms of degree 2, 2009, http://hg.countnumber.de.
  • 12. Nathan C. Ryan, Nils-Peter Skoruppa, and Fredrik Strömberg, Data on the Rankin convolution of two Siegel modular forms of degree 2, August 2009, http://data.countnumber.de/Lfg.
  • 13. The SAGE Group, SAGE Mathematics Software (Version 4.1), 2009.
  • 14. T. Shintani, On construction of holomorphic cusp forms of half integral weight, Nagoya Math. J. 58 (1975), 83-126. MR 0389772 (52:10603)
  • 15. Nils-Peter Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts, Bonner Mathematische Schriften [Bonn Mathematical Publications], 159, Universität Bonn Mathematisches Institut, Bonn, 1985, Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1984. MR 806354 (87a:11045)
  • 16. -, Computations of Siegel modular forms of genus two, Math. Comp. 58 (1992), no. 197, 381-398. MR 1106982 (92e:11041)
  • 17. Nils-Peter Skoruppa and Don Zagier, Jacobi forms and a certain space of modular forms, Invent. Math. 94 (1988), no. 1, 113-146. MR 958592 (89k:11029)
  • 18. -, A trace formula for Jacobi forms, J. Reine Angew. Math. 393 (1989), 168-198. MR 972365 (90b:11045)
  • 19. Fredrik Strömberg, Weil representation associated to finite quadratic modules, preprint (2011), arXiv:1108.0202.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11F46, 11F66, 11F27, 11F50

Retrieve articles in all journals with MSC (2010): 11F46, 11F66, 11F27, 11F50


Additional Information

Nathan C. Ryan
Affiliation: Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837
Email: nathan.ryan@bucknell.edu

Nils-Peter Skoruppa
Affiliation: Fachbereich Mathematik, Universität Siegen, Germany
Email: nils.skoruppa@uni-siegen.de

Fredrik Strömberg
Affiliation: Fachbereich Mathematik, TU-Darmstadt, Germany
Email: stroemberg@mathematik.tu-darmstadt.de

DOI: https://doi.org/10.1090/S0025-5718-2012-02584-1
Received by editor(s): August 12, 2010
Received by editor(s) in revised form: June 7, 2011
Published electronically: February 20, 2012
Additional Notes: This project was supported by the National Science Foundation under FRG Grant No. DMS-0757627, the authors also made use of hardware provided by DMS-0821725.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society