Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Spectral measures and Cuntz algebras


Authors: Dorin Ervin Dutkay and Palle E. T. Jorgensen
Journal: Math. Comp. 81 (2012), 2275-2301
MSC (2010): Primary 28A80, 42B05, 46C05, 46L89
DOI: https://doi.org/10.1090/S0025-5718-2012-02589-0
Published electronically: February 14, 2012
MathSciNet review: 2945156
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a family of measures $ \mu $ supported in $ \mathbb{R}^d$ and generated in the sense of Hutchinson by a finite family of affine transformations. It is known that interesting sub-families of these measures allow for an orthogonal basis in $ L^2(\mu )$ consisting of complex exponentials, i.e., a Fourier basis corresponding to a discrete subset $ \Gamma $ in $ \mathbb{R}^d$. Here we offer two computational devices for understanding the interplay between the possibilities for such sets $ \Gamma $ (spectrum) and the measures $ \mu $ themselves. Our computations combine the following three tools: duality, discrete harmonic analysis, and dynamical systems based on representations of the Cuntz $ C^*$-algebras $ \mathcal O_N$.


References [Enhancements On Off] (What's this?)

  • [AAR99] George E. Andrews, Richard Askey, and Ranjan Roy.
    Special functions, volume 71 of Encyclopedia of Mathematics and its Applications.
    Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [ACHM07] Akram Aldroubi, Carlos Cabrelli, Douglas Hardin, and Ursula Molter.
    Optimal shift invariant spaces and their Parseval frame generators.
    Appl. Comput. Harmon. Anal., 23(2):273-283, 2007. MR 2344616 (2008i:94010)
  • [AdLM02] K. T. Arasu, Warwick de Launey, and S. L. Ma.
    On circulant complex Hadamard matrices.
    Des. Codes Cryptogr., 25(2):123-142, 2002. MR 1883962 (2003b:05036)
  • [Bar09] Michael F. Barnsley.
    Transformations between self-referential sets.
    Amer. Math. Monthly, 116(4):291-304, 2009. MR 2503315 (2010b:28009)
  • [BHS05] Michael Barnsley, John Hutchinson, and Örjan Stenflo.
    A fractal valued random iteration algorithm and fractal hierarchy.
    Fractals, 13(2):111-146, 2005. MR 2151094 (2006b:28014)
  • [BJ97a] O. Bratteli and P. E. T. Jorgensen.
    Endomorphisms of $ {\mathcal B}({\mathcal H})$. II. Finitely correlated states on $ {\mathcal O}_n$.
    J. Funct. Anal., 145(2):323-373, 1997. MR 1444086 (98c:46128)
  • [BJ97b] Ola Bratteli and Palle E. T. Jorgensen.
    Isometries, shifts, Cuntz algebras and multiresolution wavelet analysis of scale $ N$.
    Integral Equations Operator Theory, 28(4):382-443, 1997. MR 1465320 (99k:46094b)
  • [BJ99] Ola Bratteli and Palle E. T. Jorgensen.
    Iterated function systems and permutation representations of the Cuntz algebra.
    Mem. Amer. Math. Soc., 139(663):x+89, 1999. MR 1469149 (99k:46094a)
  • [BJKW00] O. Bratteli, P. E. T. Jorgensen, A. Kishimoto, and R. F. Werner.
    Pure states on $ \mathcal O_d$.
    J. Operator Theory, 43(1):97-143, 2000. MR 1740897 (2001b:46086)
  • [BL07] William D. Banks and Florian Luca.
    Sums of prime divisors and Mersenne numbers.
    Houston J. Math., 33(2):403-413 (electronic), 2007. MR 2308986 (2008d:11112)
  • [BV05] Joseph A. Ball and Victor Vinnikov.
    Functional models for representations of the Cuntz algebra.
    In Operator theory, systems theory and scattering theory: multidimensional generalizations, volume 157 of Oper. Theory Adv. Appl., pages 1-60. Birkhäuser, Basel, 2005. MR 2129642 (2006e:47023)
  • [CCR96] D. Cerveau, J.-P. Conze, and A. Raugi.
    Ensembles invariants pour un opérateur de transfert dans $ {\bf R}\sp d$.
    Bol. Soc. Brasil. Mat. (N.S.), 27(2):161-186, 1996. MR 1418931 (98m:28044)
  • [CHK97] R. Craigen, W. H. Holzmann, and H. Kharaghani.
    On the asymptotic existence of complex Hadamard matrices.
    J. Combin. Des., 5(5):319-327, 1997. MR 1465343 (99e:05026)
  • [CHR97] J.-P. Conze, L. Hervé, and A. Raugi.
    Pavages auto-affines, opérateurs de transfert et critères de réseau dans $ {\bf R}\sp d$.
    Bol. Soc. Brasil. Mat. (N.S.), 28(1):1-42, 1997. MR 1444447 (99a:52034)
  • [CM07] Alain Connes and Matilde Marcolli.
    Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory.
    In Frontiers in number theory, physics, and geometry. II, pages 617-713. Springer, Berlin, 2007. MR 2290770 (2008g:81156)
  • [CR90] Jean-Pierre Conze and Albert Raugi.
    Fonctions harmoniques pour un opérateur de transition et applications.
    Bull. Soc. Math. France, 118(3):273-310, 1990. MR 1078079 (92g:60100)
  • [Cun77] Joachim Cuntz.
    Simple $ C\sp *$-algebras generated by isometries.
    Comm. Math. Phys., 57(2):173-185, 1977. MR 0467330 (57:7189)
  • [Den09] Qi-Rong Deng.
    Reverse iterated function system and dimension of discrete fractals.
    Bull. Aust. Math. Soc., 79(1):37-47, 2009. MR 2486879 (2010j:28013)
  • [DFdGtHR04] Remco Duits, Luc Florack, Jan de Graaf, and Bart ter Haar Romeny.
    On the axioms of scale space theory.
    J. Math. Imaging Vision, 20(3):267-298, 2004. MR 2060148 (2005k:94005)
  • [Dit04] P. Dita.
    Some results on the parametrization of complex Hadamard matrices.
    J. Phys. A, 37(20):5355-5374, 2004. MR 2065675 (2005b:15045)
  • [DJ06a] Dorin E. Dutkay and Palle E. T. Jorgensen.
    Wavelets on fractals.
    Rev. Mat. Iberoam., 22(1):131-180, 2006. MR 2268116 (2008h:42071)
  • [DJ06b] Dorin Ervin Dutkay and Palle E. T. Jorgensen.
    Iterated function systems, Ruelle operators, and invariant projective measures.
    Math. Comp., 75(256):1931-1970 (electronic), 2006. MR 2240643 (2008h:28005)
  • [DJ07] Dorin Ervin Dutkay and Palle E. T. Jorgensen.
    Analysis of orthogonality and of orbits in affine iterated function systems.
    Math. Z., 256(4):801-823, 2007. MR 2308892 (2009e:42013)
  • [DJP09] Dorin Ervin Dutkay, Palle E.T. Jorgensen, and Gabriel Picioroaga.
    Unitary representations of wavelet groups and encoding of iterated function systems in solenoids.
    Erg. Th. Dyn. Sys., 29(6):1815-1852, 2009. MR 2563094 (2011e:22009)
  • [DLC09] Xiaoyan Deng, Helong Li, and Xiaokun Chen.
    The symbol series expression and Hölder exponent estimates of fractal interpolation function.
    J. Comput. Anal. Appl., 11(3):507-523, 2009. MR 2530679 (2010i:28010)
  • [FLS09] Kevin Ford, Florian Luca, and Igor E. Shparlinski.
    On the largest prime factor of the Mersenne numbers.
    Bull. Aust. Math. Soc., 79(3):455-463, 2009. MR 2505350 (2010b:11126)
  • [Fug74] Bent Fuglede.
    Commuting self-adjoint partial differential operators and a group theoretic problem.
    J. Functional Analysis, 16:101-121, 1974. MR 0470754 (57:10500)
  • [GR09] Daniel Goncalves and Danilo Royer.
    Perron-Frobenius operators and representations of the Cuntz-Krieger algebras for infinite matrices.
    J. Math. Anal. Appl., 351(2):811-818, 2009. MR 2473986 (2010b:46120)
  • [HL08a] Xing-Gang He and Ka-Sing Lau.
    On a generalized dimension of self-affine fractals.
    Math. Nachr., 281(8):1142-1158, 2008. MR 2427166 (2010a:28009)
  • [HL08b] Tian-You Hu and Ka-Sing Lau.
    Spectral property of the Bernoulli convolutions.
    Adv. Math., 219(2):554-567, 2008. MR 2435649 (2010a:42094)
  • [Hut81] John E. Hutchinson.
    Fractals and self-similarity.
    Indiana Univ. Math. J., 30(5):713-747, 1981. MR 625600 (82h:49026)
  • [Jør82] Palle E. T. Jørgensen.
    Spectral theory of finite volume domains in $ {\bf R}\sp {n}$.
    Adv. in Math., 44(2):105-120, 1982. MR 658536 (84k:47024)
  • [Jor06] Palle E. T. Jorgensen.
    Analysis and probability: wavelets, signals, fractals, volume 234 of Graduate Texts in Mathematics.
    Springer, New York, 2006. MR 2254502 (2008a:42030)
  • [KS93] H. Kharaghani and Jennifer Seberry.
    The excess of complex Hadamard matrices.
    Graphs Combin., 9(1):47-56, 1993. MR 1215584 (94f:05028)
  • [LL07] King-Shun Leung and Ka-Sing Lau.
    Disklikeness of planar self-affine tiles.
    Trans. Amer. Math. Soc., 359(7):3337-3355 (electronic), 2007. MR 2299458 (2008k:52046)
  • [MM09] Alexandru Mihail and Radu Miculescu.
    The shift space for an infinite iterated function system.
    Math. Rep. (Bucur.), 11(61)(1):21-32, 2009. MR 2506506 (2010b:28022)
  • [MP04] Leo Murata and Carl Pomerance.
    On the largest prime factor of a Mersenne number.
    In Number theory, volume 36 of CRM Proc. Lecture Notes, pages 209-218. Amer. Math. Soc., Providence, RI, 2004. MR 2076597 (2005i:11137)
  • [MZ09] Ursula M. Molter and Leandro Zuberman.
    A fractal Plancherel theorem.
    Real Anal. Exchange, 34(1):69-85, 2009. MR 2527123 (2010e:42013)
  • [OS05] Kasso A. Okoudjou and Robert S. Strichartz.
    Weak uncertainty principles on fractals.
    J. Fourier Anal. Appl., 11(3):315-331, 2005. MR 2167172 (2006f:28011)
  • [Ped04] Steen Pedersen.
    On the dual spectral set conjecture.
    In Current trends in operator theory and its applications, volume 149 of Oper. Theory Adv. Appl., pages 487-491. Birkhäuser, Basel, 2004. MR 2063764 (2005h:42016)
  • [Tao04] Terence Tao.
    Fuglede's conjecture is false in 5 and higher dimensions.
    Math. Res. Lett., 11(2-3):251-258, 2004. MR 2067470 (2005i:42037)
  • [Tho05] Klaus Thomsen.
    On the structure of beta shifts.
    In Algebraic and topological dynamics, volume 385 of Contemp. Math., pages 321-332. Amer. Math. Soc., Providence, RI, 2005. MR 2180243 (2006f:37012)
  • [YALC03] Zu-Guo Yu, Vo Anh, Ka-Sing Lau, and Ka-Hou Chu.
    The genomic tree of living organisms based on a fractal model.
    Phys. Lett. A, 317(3-4):293-302, 2003. MR 2018655
  • [ZHSS09] Haibiao Zheng, Yanren Hou, Feng Shi, and Lina Song.
    A finite element variational multiscale method for incompressible flows based on two local Gauss integrations.
    J. Comput. Phys., 228(16):5961-5977, 2009. MR 2542923 (2010h:76096)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 28A80, 42B05, 46C05, 46L89

Retrieve articles in all journals with MSC (2010): 28A80, 42B05, 46C05, 46L89


Additional Information

Dorin Ervin Dutkay
Affiliation: University of Central Florida, Department of Mathematics, 4000 Central Florida Blvd., P.O. Box 161364, Orlando, Florida 32816-1364
Email: ddutkay@mail.ucf.edu

Palle E. T. Jorgensen
Affiliation: University of Iowa, Department of Mathematics, 14 MacLean Hall, Iowa City, Iowa 52242-1419
Email: jorgen@math.uiowa.edu

DOI: https://doi.org/10.1090/S0025-5718-2012-02589-0
Keywords: Spectrum, Hilbert space, fractal, Fourier bases, selfsimilar, iterated function system, operator algebras.
Received by editor(s): January 25, 2010
Received by editor(s) in revised form: July 14, 2011
Published electronically: February 14, 2012
Additional Notes: With partial support by the National Science Foundation
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society