Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of the two regular super-exponentials to base exp(1/e)


Authors: Henryk Trappmann and Dmitrii Kouznetsov
Journal: Math. Comp. 81 (2012), 2207-2227
MSC (2010): Primary 30D05; Secondary 30A99, 33F99, 65Q20
DOI: https://doi.org/10.1090/S0025-5718-2012-02590-7
Published electronically: February 8, 2012
MathSciNet review: 2945152
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The two regular super-exponentials to base exp(1/e) are constructed. An efficient algorithm for the evaluation of these super-exponentials and their inverse functions is suggested and compared to the already published results.


References [Enhancements On Off] (What's this?)

  • 1. Irvine N. Baker, Zusammensetzungen ganzer Funktionen, Math. Z. 69 (1958), 121-163. MR 0097532 (20:4000)
  • 2. Jean Écalle, Théorie des invariants holomorphes, Ph.D. thesis, mathématiques d'Orsay, 1974.
  • 3. -, Théorie itérative: Introduction à la théorie des invariants holomorphes, J. Math. Pur. Appl. IX. Sér. 54 (1975), 183-258.
  • 4. P. Fatou, Sur les équations fonctionnelles., Bull. Math. Soc. France 47/48 (1919/1920), 161-271/33-94, 208-314 (French).
  • 5. Eri Jabotinsky, Analytic iteration, Trans. Amer. Math. Soc. 108 (1963), 457-477. MR 0155971 (27:5904)
  • 6. Hellmuth Kneser, Reelle analytische Lösungen der Gleichung $ \varphi (\varphi (x))=e^x$ und verwandter Funktionalgleichungen, J. Reine Angew. Math. 187 (1949), 56-67. MR 0035385 (11:726e)
  • 7. Dmitrii Kouznetsov, Solution of $ f(x+1)=\exp (f(x))$ in complex $ z$-plane, Math. Comp 78 (2009), 1647-1670. MR 2501068 (2010e:30021)
  • 8. -, Superexponential as special function, Vladikavkaz Mathematical Journal 12 (2010), no. 2, pp. 31-45. (In Russian). English translation: http://tori.ils.uec.ac.jp/PAPERS/2010vladie.pdf; http://www.ils.uec.ac.jp/~dima/PAPERS/2010vladie.pdf
  • 9. Dmitrii Kouznetsov and Henryk Trappmann, Portrait of the four regular super-exponentials to base sqrt(2), Mathematics of Computation 79 (2010), 1727-1756. MR 2630010 (2011e:30003)
  • 10. -, Super-functions and sqrt of factorial, Moscow University Bulletin 65 (2010), 6-12.
  • 11. D.Yu. Kouznetsov, Holomorphic extension of the logistic sequence, Moscow University Physics Bulletin 65 (2010), 91-98 (Russian version: p.24-31) (English).
  • 12. Marek Kuczma, Bogdan Choczewski, and Roman Ger, Iterative functional equations, Encyclopedia of Mathematics and Its Applications, 32, Cambridge University Press, Cambridge, 1990. MR 1067720 (92f:39002)
  • 13. Paul Lévy, Fonctions à croissance régulière et itération d'ordre fractionnaire, Annali di Matematica Pura et Applicata 5 (1928), no. 4, 269-298. MR 1553120
  • 14. J. Milnor, Dynamics in one complex variable. 3rd ed., Princeton Annals in Mathematics 160. Princeton, NJ: Princeton University Press. viii, 304 pp., 2006. MR 2193309 (2006g:37070)
  • 15. G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203-258. MR 0107016 (21:5744)
  • 16. W.J. Thron, Sequences generated by iteration., Trans. Am. Math. Soc. 96 (1960), 38-53 (English). MR 0117462 (22:8241)
  • 17. H. Trappmann and D. Kouznetsov, Uniqueness of holomorphic Abel functions at a complex fixed point pair, Aequationes Math. 81 (2011), 65-76. MR 2773090
  • 18. Peter L Walker, On the solutions of an abelian functional equation, Journal of mathematical analysis and applications 155 (1991), 93-110. MR 1089328 (92e:39026)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 30D05, 30A99, 33F99, 65Q20

Retrieve articles in all journals with MSC (2010): 30D05, 30A99, 33F99, 65Q20


Additional Information

Henryk Trappmann
Email: henryk@pool.math.tu-berlin.de

Dmitrii Kouznetsov
Affiliation: Institute for Laser Science, University of Electro-Communications 1-5-1 Chofugaoka, Chofushi, Tokyo, 182-8585, Japan
Email: dima@uls.uec.ac.jp

DOI: https://doi.org/10.1090/S0025-5718-2012-02590-7
Received by editor(s): March 17, 2011
Received by editor(s) in revised form: July 7, 2011
Published electronically: February 8, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society