Mathematics of Computation

This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology. Reviews of books in areas related to computational mathematics are also included.

Submission information. See Information for Authors at the end of this issue.

Publisher Item Identifier. The Publisher Item Identifier (PII) appears at the top of the first page of each article published in this journal. This alphanumeric string of characters uniquely identifies each article and can be used for future cataloging, searching, and electronic retrieval.

Postings to the AMS website. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

Subscription information. Mathematics of Computation is published quarterly and is also accessible electronically from www.ams.org/journals/. Subscription prices for Volume 81 (2012) are as follows: for paper delivery, US$577 list, US$461.60 institutional member, US$519.30 corporate member; US$346.20 individual member; for electronic delivery, US$508 list, US$406.40 institutional member, US$457.20 corporate member, US$304.80 individual member. Upon request, subscribers to paper delivery of this journal are also entitled to receive electronic delivery. If ordering the paper version, add US$30 for surface delivery outside the United States and India; US$43 to India. Expedited delivery to destinations in North America is US$35; elsewhere US$77. Subscription renewals are subject to late fees. See www.ams.org/help-faq for more journal subscription information.

Back number information. For back issues see the www.ams.org/bookstore.

Subscriptions and orders should be addressed to the American Mathematical Society, P.O. Box 845904, Boston, MA 02284-5904 USA. All orders must be accompanied by payment. Other correspondence should be addressed to 201 Charles Street, Providence, RI 02904-2294 USA.

Copying and reprinting. Material in this journal may be reproduced by any means for educational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledgment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. Requests can also be made by e-mail to reprint-permission@ams.org.

Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.)

Mathematics of Computation (ISSN 0025-5718) is published quarterly by the American Mathematical Society at 201 Charles Street, Providence, RI 02904-2294 USA. Periodicals postage is paid at Providence, Rhode Island. Postmaster: Send address changes to Mathematics of Computation, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

© 2012 by the American Mathematical Society. All rights reserved.

This journal is indexed in Mathematical Reviews, Zentralblatt MATH, Science Citation Index®, Science Citation Index®-Expanded, ISI Alerting Services®, CompuMath Citation Index®, and Current Contents®/Physical, Chemical & Earth Sciences. This journal is archived in Portico and in CLOCKSS.

The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability.
J. Guzmán and D. Leykekhman, Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra . 1879
Zhiqiang Cai and Shun Zhang, Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation . 1903
Liangyue Ji, Yan Xu, and Jennifer K. Ryan, Accuracy-enhancement of discontinuous Galerkin solutions for convection-diffusion equations in multiple-dimensions 1929
Jean-Luc Guermond, Peter D. Minev, and Abner J. Salgado, Convergence analysis of a class of massively parallel direction splitting algorithms for the Navier-Stokes equations in simple domains 1951
S. Mishra and Ch. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data 1979
R. Eymard, T. Gallouët, R. Herbin, and A. Linke, Finite volume schemes for the biharmonic problem on general meshes 2019
Barbara Kaltenbacher and Jonas Offtermatt, A convergence analysis of regularization by discretization in preimage space 2049
Tony Lelièvre, Mathias Rousset, and Gabriel Stoltz, Langevin dynamics with constraints and computation of free energy differences 2071
Sunyoung Bu, Jingfang Huang, and Michael L. Minion, Semi-implicit Krylov deferred correction methods for differential algebraic equations 2127
Avram Sidi, Euler–Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities 2159
Michael Gnewuch, Infinite-dimensional integration on weighted Hilbert spaces 2175
Henryk Trappmann and Dmitrii Kouznetsov, Computation of the two regular super-exponentials to base \(\exp(1/e) \) 2207
Kenier Castillo, Regina Litz Lamblém, Fernando Rodrigo Rafaeli, and Alagacone Sri Ranga, Szegő and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations 2229
Howard S. Cohl, Table Errata to “Formulas and theorems for the special functions of mathematical physics” by W. Magnus, F. Oberhettinger & R. P. Soni (1966) 2251
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Fourier duality for fractal measures with affine scales 2253
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Spectral measures and Cuntz algebras 2275
M. H. Castro and V. A. Menegatto, Eigenvalue decay of positive integral operators on the sphere 2303
Eugenio P. Balanzario and Jorge Sánchez-Ortiz, Riemann-Siegel integral formula for the Lerch zeta function 2319
Pieter Rozenhart, Michael Jacobson Jr., and Renate Scheidler, Tabulation of cubic function fields via polynomial binary cubic forms 2335
Nathan C. Ryan, Nils-Peter Skoruppa, and Fredrik Strömberg,
Numerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two 2361

H. Jager, A metrical result on the approximation by continued fractions 2377

J. Beers, D. Henshaw, C. K. McCall, S. B. Mulay, and M. Spindler,
Corrigenda and addenda to “Fundamentality of a cubic unit u for $\mathbb{Z}[u]$” 2383

I. Bauer and R. Pignatelli, The classification of minimal product-quotient surfaces with $p_g = 0$ 2389

L. Naughton and G. Pfeiffer, Computing the table of marks of a cyclic extension 2419

Simon R. Blackburn and James F. McKee, Constructing k-radius sequences 2439

L. Hajdu and N. Saradha, Disproof of a conjecture of Jacobsthal 2461
Abdulle, Assyr. *Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales*, 687

Ahn, Jeoung-Hwan, and Soun-Hi Kwon. *The imaginary abelian number fields of 2-power degrees with ideal class groups of exponent ≤ 2*, 533

Ammari, Habib, Hyeonbae Kang, Eunjoo Kim, and June-Yub Lee. *The generalized polarization tensors for resolved imaging Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements*, 839

Ammari, Habib, Hyeonbae Kang, Mikyoung Lim, and Habib Zribi. *The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion*, 367

Anh, V. *See Chen, Chang-Ming*

Area, Iván, Dimitar K. Dimitrov, Eduardo Godoy, and Fernando R. Rafaeli. *Inequalities for zeros of Jacobi polynomials via Obrechkoff’s theorem*, 991

Balanzario, Eugenio P., and Jorge Sánchez-Ortiz. *Riemann-Siegel integral formula for the Lerch zeta function*, 2319

Barnett, A. Ross. *See Broughan, Kevin A.*

Batenkov, Dmitry, and Yosef Yomdin. *Algebraic Fourier reconstruction of piecewise smooth functions*, 277

Bauer, I., and R. Pignatelli. *The classification of minimal product-quotient surfaces with p_g = 0*, 2389

Berkane, D., O. Bordellès, and O. Ramaré. *Explicit upper bounds for the remainder term in the divisor problem*, 1025

Berthomieu, Jérémie, and Grégoire Lecerf. *Reduction of bivariate polynomials from convex-dense to dense, with application to factorizations*, 1799

Blackburn, Simon R., and James F. McKee. *Constructing k-radius sequences*, 2439

Bley, Werner. *Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture (Part II)*, 1681

Bonito, Andrea, and Joseph E. Pasciak. *Convergence analysis of variational and non-variational multigrid algorithms for the Laplace-Beltrami operator*, 1263

Castillo, Kenier, Regina Litz Lamblém, Fernando Rodrigo Rafaeli, and Alagacne R. S. Ranga. *Szegő and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations*, 2229

Castillo, Kenier, Regina Litz Lamblém, Fernando Rodrigo Rafaeli, and Alagacne R. S. Ranga. *Szego and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations*, 2229

zu Castell, Wolfgang. *See Berschneider, Georg*

Castillo, Kenier, Regina Litz Lamblém, Fernando Rodrigo Rafaeli, and Alagacne R. S. Ranga. *Szego and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations*, 2229

Castillo, Kenier, Regina Litz Lamblém, Fernando Rodrigo Rafaeli, and Alagacne R. S. Ranga. *Szego and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations*, 2229

Celiker, Fatih, Bernardo Cockburn, and Ke Shi. *A projection-based error analysis of HDG methods for Timoshenko beams*, 131
Chabaud, Brandon, and Bernardo Cockburn. *Uniform-in-time superconvergence of HDG methods for the heat equation*, 107

Chang, Xiao-Wen, Damien Stehlé, and Gilles Villard. *Perturbation analysis of the QR factor R in the context of LLL lattice basis reduction*, 1487

Chatzipantelidis, P., R. D. Lazarov, and V. Thomée. *Some error estimates for the lumped mass finite element method for a parabolic problem*, 1

Chee, Yeow Meng, San Ling, Yin Tan, and Xiande Zhang. *Universal cycles for minimum coverings of pairs by triples, with application to 2-radius sequences*, 585

Chen, Long. *See Zhong, Liujian*

Cheng, Yingda, Irene M. Gamba, and Jennifer Proft. *Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations*, 153

Chernov, Alexey. *Optimal convergence estimates for the trace of the polynomial L2-projection operator on a simplex*, 765

Cockburn, Bernardo. *See Celiker, Fatih*

Cockburn, Bernardo, and Jintao Cui. *An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions*, 1355

Cohen, Albert. *See Mirebeau, Jean-Marie*

Cohen, Albert, Nira Dyn, Frédéric Hecht, and Jean-Marie Mirebeau. *Adaptive multiresolution analysis based on anisotropic triangulations*, 789

Cohl, Howard S. *Table Errata to “Formulas and theorems for the special functions of mathematical physics” by W. Magnus, F. Oberhettinger & R. P. Soni (1966)*, 2251

Croot, Ernest, III. *See Tao, Terence*

Cui, J. *See Brenner, S. C.*

Cui, Jintao. *See Cockburn, Bernardo*

Dahlke, Stephan, Massimo Fornasier, and Thorsten Raasch. *Multilevel preconditioning and adaptive sparse solution of inverse problems*, 419

De-Kang, Mao. *See Yanfen, Cui*

Demanet, Laurent, and Lixing Ying. *Fast wave computation via Fourier integral operators*, 1455

Demkowicz, L., J. Gopalakrishnan, and J. Schöberl. *Polynomial extension operators. Part III*, 1289

Dimitrov, Dimitar K. *See Area, Iván*

Dutkay, Dorin Ervin, and Palle E. T. Jorgensen. *Fourier duality for fractal measures with affine scales*, 2253

Dyn, Nira. *See Cohen, Albert*

Elsenhans, Andreas-Stephan. *Rational points on diagonal quartic surfaces*, 481

Eymard, R., T. Gallouët, R. Herbin, and A. Linke. *Finite volume schemes for the biharmonic problem on general meshes*, 2019

Fan, Jinyan. *The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence*, 447

Fan, Neil J. Y. *See Chen, William Y. C. *

Farouki, Rida T., Carlotta Giannelli, Carla Manni, and Alessandra Sestini. *Design of rational rotation–minimizing rigid body motions by Hermite interpolation*, 879

Filaseta, Michael, and Michael J. Mossinghoff. *The distance to an irreducible polynomial, II*, 1571

Fletcher, S. Adam, Pace P. Nielsen, and Pascal Ochem. *Sieve methods for odd perfect numbers*, 1753

Fornasier, Massimo. See Dahlke, Stephan

Franz, Sebastian, R. Bruce Kellogg, and Martin Stynes. *Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities*, 661

Fukushima, Toshio. *Series expansions of symmetric elliptic integrals*, 957

Gallouët, T. See Eymard, R.

Gallouët, T., A. Larcher, and J. C. Latché. *Convergence of a finite volume scheme for the convection-diffusion equation with \(L^1\) data*, 1429

Gamba, Irene M. See Cheng, Yingda

Giannelli, Carlotta. See Farouki, Rida T.

Gnewuch, Michael. *Infinite-dimensional integration on weighted Hilbert spaces*, 2175

Godoy, Eduardo. See Area, Iván

Gopalakrishnan, J. See Demkowicz, L.

Guermond, Jean-Luc, Peter D. Minev, and Abner J. Salgado. *Convergence analysis of a class of massively parallel direction splitting algorithms for the Navier-Stokes equations in simple domains*, 1951

Hajdu, L., and N. Saradha. *Disproof of a conjecture of Jacobsthal*, 2461

He, Yi. See Brezinski, Claude

Hecht, Frédéric. See Cohen, Albert

Hejne, Bas. *The maximal rank of elliptic Delsarte surfaces*, 1111

Helgott, Harald. See Tao, Terence

Henshaw, D. See Beers, J.

Herbin, R. See Eymard, R.

Hiary, Ghaith A., and Andrew M. Odlyzko. *The zeta function on the critical line: Numerical evidence for moments and random matrix theory models*, 1723

Hu, Xing-Biao. See Brezinski, Claude

Huang, Jingfang. See Bu, Sunyoung

Huhtanen, Marko, and Allan Perämäki. *Numerical solution of the R-linear Beltrami equation*, 387

Iwata, Satoru, Mizuyo Takamatsu, and Caren Tischendorf. *Tractability index of hybrid equations for circuit simulation*, 923

Jacobson, Michael, Jr. See Rozenhart, Pieter

Jager, H. *A metrical result on the approximation by continued fractions*, 2377

Jia, Jeffrey Y. T. See Chen, William Y. C.

Jin, Bangti, and Xiliang Lu. *Numerical identification of a Robin coefficient in parabolic problems*, 1369

Jones, John W., and Rachel Wallington. *Number fields with solvable Galois groups and small Galois root discriminants*, 555

Jørgensen, Palle E. T. *Ergodic scales in fractal measures*, 941

Kahan, William. See Li, Ren-Cang

Kaltenbacher, Barbara, and Jonas Offtermatt. *A convergence analysis of regularization by discretization in preimage space*, 2049

Kang, Hyeonbae. See Ammari, Habib

Karabíš, Ján, and Roman Nedela. *Archimedean maps of higher genera*, 569

Karpinski, Marek. See Ivanyos, Gábor
Keller, Wolfgang, Jacques Martinet, and Achill Schürmann, with an Appendix by Mathieu Dutour Sikirić. *On classifying Minkowskian sublattices*, 1063

Kellogg, R. Bruce. See Franz, Sebastian

Kim, Eunjoo. See Ammari, Habib

Kirschmer, Markus. *A normal form for definite quadratic forms over \(\mathbb{F}_q[t] \)*, 1619

Kopteva, Natalia, and Maria Pickett. *A second-order overlapping Schwarz method for a 2D singularly perturbed semilinear reaction-diffusion problem*, 81

Kouznetsov, Dmitrii. See Trappmann, Henryk

Kreuzer, Christian. *Analysis of an adaptive Uzawa finite element method for the nonlinear Stokes problem*, 21

Krishtal, Ilya A. See Blanchard, Jeffrey D.

Kwon, Soun-Hi. See Ahn, Jeoung-Hwan

Lambé, Regina Litz. See Castillo, Kenier

Larcher, A. See Gالية, T.

Latché, J. C. See Gallouët, T.

Lauter, Kristin. See Bröker, Reinier

Lazarov, R. D. See Chatzipantelidis, P.

Lecerf, Grégoire. See Berthomieu, Jérémie

Lee, June-Yub. See Ammari, Habib

Lelièvre, Tony, Mathias Rousset, and Gabriel Stoltz. *Langevin dynamics with constraints and computation of free energy differences*, 2071

Lenczner, Michel, Gérard Montseny, and Youssef Yakoubi. *Diffusive realizations for solutions of some operator equations: The one-dimensional case*, 319

Leroux, Louis. *Computing the torsion points of a variety defined by lacunary polynomials*, 1587

Leykekhman, D. See Demlow, A.

Li, Ren-Cang, and William Kahan. *A family of Anadromic numerical methods for matrix Riccati differential equations*, 233

Li, Yonghai, Shi Shu, Yuesheng Xu, and Qingsong Zou. *Multilevel preconditioning for the finite volume method*, 1399

Lim, Mikyoung. See Ammari, Habib

Liu, F. See Chen, Chang-Ming

McCall, C. K. See Beers, J.

McKee, James F. See Blackburn, Simon R.

Mehmetoglu, Orhan, and Bojan Popov. *Maximum principle and convergence of central schemes based on slope limiters*, 219

Menegatto, V. A. See Castro, M. H.

Minion, Michael L. See Bu, Sunyoung

Mirebeau, Jean-Marie. See Cohen, Albert

Mirebeau, Jean-Marie, and Albert Cohen. *Greedy bisection generates optimally adapted triangulations*, 811

Montseny, Gérard. See Lenczner, Michel
Mossinghoff, Michael J. See Filaseta, Michael
Mulay, S. B. See Beers, J.
Nan, Z. See Brenner, S. C.
Naughton, L., and G. Pfeiffer. Computing the table of marks of a cyclic extension, 2419
Navas, Luis M., Francisco J. Ruiz, and Juan L. Varona. Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials, 1707
Nedela, Roman. See Karabáš, Ján
Neumann, V. G. Lopez, and Constantin Manoil. Explicit computations on the desingularized Kummer surface, 1149
Nielsen, Paco P. See Fletcher, S. Adam
Niemeyer, Alice C., Tomasz Popiel, Cheryl E. Praeger, and Şükrü Yalçınkaya. On semiregular permutations of a finite set, 605
Ochem, Pascal. See Fletcher, S. Adam
Ochem, Pascal, and Michael Rao. Odd perfect numbers are greater than 10^{1500}, 1869
Odlyzko, Andrew M. See Hiary, Ghaith A.
Offtermatt, Jonas. See Kaltenbacher, Barbara
Olshanskii, Maxim A. Multigrid analysis for the time dependent Stokes problem, 57
Ozdemir, Enver. See Ling, San
Pasciak, Joseph E. See Bonito, Andrea
Perämäki, Allan. See Huhtanen, Marko
Pfeiffer, G. See Naughton, L.
Pickett, Maria. See Kopteva, Natalia
Pignatelli, R. See Bauer, I.
Popiel, Tomasz. See Niemeyer, Alice C.
Popov, Bojan. See Mehmetoglu, Orhan
Praeger, Cheryl E. See Niemeyer, Alice C.
Proft, Jennifer. See Cheng, Yingda
Qi, Liqun. See Zhang, Xinzhen
Qiu, Weifeng. See Cockburn, Bernardo
Raasch, Thorsten. See Dahlke, Stephan
Rafaeli, Fernando R. See Area, Iván
Rafaeli, Fernando Rodrigo. See Castillo, Kenier
Ramaré, O. See Berkane, D.
Ranga, Alagacone Sri. See Castillo, Kenier
Rao, Michaeł. See Ochem, Pascal
Redivo-Zaglia, Michela. See Brezinski, Claude
Robles-Pérez, Aureliano M., and José Carlos Rosales. The Frobenius problem for numerical semigroups with embedding dimension equal to three, 1609
Rojas-Medar, M. A. See Gutiérrez-Santacreu, J. V.
Rónyai, Lajos. See Ivanyos, Gábor
Rosales, José Carlos. See Robles-Pérez, Aureliano M.
Rousset, Mathias. See Lelièvre, Tony
Rozenhart, Pieter, Michael Jacobson Jr., and Renate Scheidler. Tabulation of cubic function fields via polynomial binary cubic forms, 2335
Ruiz, Francisco J. See Navas, Luis M.
Ryan, Jennifer K. See Ji, Liangyue
Ryan, Nathan C., Nils-Peter Skoruppa, and Fredrik Strömberg. Numerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two, 2361
Salgado, Abner J. See Guermond, Jean-Luc
Sánchez-Ortiz, Jorge. See Balanzario, Eugenio P.
Santos, J. L. See Martins, M. M.
Saradha, N. See Hajdu, L.
Saxena, Nitin. See Ivanyos, Gábor
Schatz, A. H. See Demlow, A.
Scheidler, Renate. See Rozenhart, Pieter
Schöberl, J. See Demkowicz, L.
Schrödl, Stefan J. See Bershneider, Georg
Schürmann, Achill. See Keller, Wolfgang
INDEX TO VOLUME 81 (2012)

Schwab, Ch. See Mishra, S.
Sestini, Alessandra. See Farouki, Rida T.
Shi, Ke. See Celiker, Fatih
Shi, Shi. See Li, Yonghai
Sidi, Avraham. Euler–Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities, 2159
Sijsling, Jeroen. Arithmetic (1; e)-curves and Belyi maps, 1823
Sikirić, Mathieu Dutour. See Keller, Wolfgang
Silis, G. F. See Fisher, T. A.
Simis, Aron, and Rafael H. Villarreal. Combinatorics of Cremona monomial maps, 1857
Skoruppa, Nils-Peter. See Ryan, Nathan C.
Spindler, M. See Beers, J.
Stehlé, Damien. See Chang, Xiao-Wen
Stoltz, Gabriel. See Lelièvre, Tony
Strömberg, Fredrik. See Ryan, Nathan C.
Stynes, Martin. See Franz, Sebastian
Sun, Jian-Qing. See Brezinski, Claude
Sung, Li-yeng. See Brenner, Susanne C.
Sung, L.-Y. See Brenner, S. C.
Sutherland, Andrew V. Constructing elliptic curves over finite fields with prescribed torsion, 1131
Takamatsu, Mizuyo. See Iwata, Satoru
Tan, Yin. See Chee, Yeow Meng
Tao, Terence, Ernest Croot III, and Harald Helfgott. Deterministic methods to find primes, 1233
Thomée, V. See Chatzipantelidis, P.
Tischendorf, Caren. See Iwata, Satoru
Trappmann, Henryk, and Dmitrii Kouznetsov. Computation of the two regular super-exponentials to base exp(1/e), 2207
Treviño, Enrique. The least inert prime in a real quadratic field, 1777
Trudgian, Timothy. An improved upper bound for the argument of the Riemann zeta-function on the critical line, 1053
Turner, I. See Chen, Chang-Ming
Urroz, Jorge Jiménez, Florian Luca, and Igor E. Shparlinski. On the number of isogeny classes of pairing-friendly elliptic curves and statistics of MNT curves, 1093
Vabishchevich, Petr N. On a new class of additive (splitting) operator-difference schemes, 267
Varona, Juan L. See Navas, Luis M.
Villard, Gilles. See Chang, Xiao-Wen
Villarreal, Rafael H. See Simis, Aron
Wahlin, L. B. See Demlow, A.
Wallington, Rachel. See Jones, John W.
Wang, Haiyong, and Shuhuang Xiang. On the convergence rates of Legendre approximation, 861
Weinstein, Jared. See Loeffler, David
Wittum, Gabriel. See Zhong, Liuqiang
Xiang, Shuhuang. See Wang, Haiyong
Xing, Chaoping. See Ling, San
Xu, Jinchao. See Zhong, Liuqiang
Xu, Yan. See Ji, Liangyue
Xu, Yuesheng. See Li, Yonghai
Yakoubi, Youssef. See Lenczner, Michel
Yalçınkaya, Şükru. See Niemeyer, Alice C.
Yanfen, Cui, and Mao De-kang. Error self-canceling of a difference scheme maintaining two conservation laws for linear advection equation, 715
Ye, Yinyu. See Zhang, Xinzhen
Ying, Lexing. See Demanet, Laurent
INDEX TO VOLUME 81 (2012)

Yomdin, Yosef. See Batenkov, Dmitry
Yousif, W. See Martins, M. M.
Zhang, Shun. See Cai, Zhiqiang
Zhang, Xiande. See Chee, Yeow Meng
Zhang, Xinzhen, Liqun Qi, and Yinyu Ye. *The cubic spherical optimization problems*, 1513
Zhang, Yi. See Brenner, Susanne C.
Zou, Qingsong. See Li, Yonghai
Zribi, Habib. See Ammari, Habib
MATHEMATICS OF COMPUTATION

AMERICAN MATHEMATICAL SOCIETY

EDITED BY
Remi Abgrall
Susanne C. Brenner, Managing Editor
Daniela Calvetti
Zhiming Chen
Ronald F. A. Cools
Ricardo G. Duran
Vivette Girault
Douglas Hardin
Fred J. Hickernell
Gregor Kemper
Boris N. Khoromskij
Christian Lubich
Gunter Malle
Michael J. Mossinghoff
Stanley Osher
Gilles Pagès
Cheryl E. Praeger
Renate Scheidler
Christoph Schwab
Jie Shen
Zuowei Shen
Igor E. Shparlinski
Chi-Wang Shu
Chris Smyth
Michael E. Stillman
Daniel B. Szyld
Tao Tang
Hans Volkmer
Ya-xiang Yuan
Zhimin Zhang

PROVIDENCE, RHODE ISLAND USA

ISSN 0025-5718
P. Chatzipantelidis, R. D. Lazarov, and V. Thomée, Some error estimates for the lumped mass finite element method for a parabolic problem .. 1

Christian Kreuzer, Analysis of an adaptive Uzawa finite element method for the nonlinear Stokes problem .. 21

Maxim A. Olshanskii, Multigrid analysis for the time dependent Stokes problem .. 57

Natalia Kopteva and Maria Pickett, A second-order overlapping Schwarz method for a 2D singularly perturbed semilinear reaction-diffusion problem .. 81

Brandon Chabaud and Bernardo Cockburn, Uniform-in-time superconvergence of HDG methods for the heat equation 107

Fatih Celiker, Bernardo Cockburn, and Ke Shi, A projection-based error analysis of HDG methods for Timoshenko beams 131

Yingda Cheng, Irene M. Gamba, and Jennifer Proft, Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations .. 153

J. V. Gutiérrez-Santacreu and M. A. Rojas-Medar, Uniform-in-time error estimates for spectral Galerkin approximations of a mass diffusion model .. 191

Orhan Mehmetoglu and Bojan Popov, Maximum principle and convergence of central schemes based on slope limiters 219

Ren-Cang Li and William Kahan, A family of Anadromic numerical methods for matrix Riccati differential equations 233

Petr N. Vabishchevich, On a new class of additive (splitting) operator-difference schemes .. 267

Dmitry Batenkov and Yosef Yomdin, Algebraic Fourier reconstruction of piecewise smooth functions .. 277

Michel Lenczner, Gérard Montseny, and Youssef Yakoubi, Diffusive realizations for solutions of some operator equations: The one-dimensional case .. 319

Chang-Ming Chen, F. Liu, V. Anh, and I. Turner, Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation .. 345

Habib Ammari, Hyeonbae Kang, Mikyoung Lim, and Habib Zribi, The generalized polarization tensors for resolved imaging. Part I: Shape reconstruction of a conductivity inclusion .. 367

Marko Huhtanen and Allan Perämäki, Numerical solution of the R-linear Beltrami equation .. 387

M. M. Martins, W. Yousif, and J. L. Santos, A variant of the AOR method for augmented systems .. 399

Stephan Dahlke, Massimo Fornasier, and Thorsten Raasch, Multilevel preconditioning and adaptive sparse solution of inverse problems .. 419
Jinyan Fan, The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence 447
Wenchang Chu, Analytical formulae for extended $3F_2$-series of Watson–Whipple–Dixon with two extra integer parameters 467
Andreas-Stephan Elsenhans, Rational points on diagonal quartic surfaces 481
Gábor Ivanyos, Marek Karpinski, Lajos Rónyai, and Nitin Saxena, Trading GRH for algebra: Algorithms for factoring polynomials and related structures .. 493
Jeoung-Hwan Ahn and Soun-Hi Kwon, The imaginary abelian number fields of 2-power degrees with ideal class groups of exponent ≤ 2 533
John W. Jones and Rachel Wallington, Number fields with solvable Galois groups and small Galois root discriminants 555
Ján Karabáš and Roman Nedela, Archimedean maps of higher genera . 569
Yeow Meng Chee, San Ling, Yin Tan, and Xiande Zhang, Universal cycles for minimum coverings of pairs by triples, with application to 2-radius sequences ... 585
Alice C. Niemeyer, Tomasz Popiel, Cheryl E. Praeger, and Şükrü Yalçınkaya, On semiregular permutations of a finite set 605

Vol. 81, No. 278 April 2012

Liuqiang Zhong, Long Chen, Shi Shu, Gabriel Wittum, and Jinchao Xu, Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations 623
Sebastian Franz, R. Bruce Kellogg, and Martin Stynes, Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities 661
Assyr Abdulle, Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales 687
Cui Yanfen and Mao De-kang, Error self-canceling of a difference scheme maintaining two conservation laws for linear advection equation 715
A. Demlow, D. Leykekhman, A. H. Schatz, and L. B. Wahlbin, Best approximation property in the W_1^∞ norm for finite element methods on graded meshes .. 743
Alexey Chernov, Optimal convergence estimates for the trace of the polynomial L^2-projection operator on a simplex 765
Albert Cohen, Nira Dyn, Frédéric Hecht, and Jean-Marie Mirebeau, Adaptive multiresolution analysis based on anisotropic triangulations . 789
Jean-Marie Mirebeau and Albert Cohen, Greedy bisection generates optimally adapted triangulations ... 811
Habib Ammari, Hyeonbae Kang, Eunjoo Kim, and June-Yub Lee, The generalized polarization tensors for resolved imaging Part II: Shape and electromagnetic parameters reconstruction of an electromagnetic inclusion from multistatic measurements 839
Haiyong Wang and Shuhuang Xiang, On the convergence rates of Legendre approximation .. 861
Rida T. Farouki, Carlotta Giannelli, Carla Manni, and Alessandra Sestini, Design of rational rotation–minimizing rigid body motions by Hermite interpolation .. 879
Jeffrey D. Blanchard and Ilya A. Krishtal, Matricial filters and crystallographic composite dilation wavelets 905
Satoru Iwata, Mizuyo Takamatsu, and Caren Tischendorf, Tractability index of hybrid equations for circuit simulation 923
Palle E. T. Jorgensen, Ergodic scales in fractal measures 941
Toshio Fukushima, Series expansions of symmetric elliptic integrals 957
Iván Area, Dimitar K. Dimitrov, Eduardo Godoy, and Fernando R. Rafaeli, Inequalities for zeros of Jacobi polynomials via Obrechkoff’s theorem ... 991
William Y. C. Chen, Neil J. Y. Fan, and Jeffrey Y. T. Jia, The generating function for the Dirichlet series $L_m(s)$ 1005
D. Berkane, O. Bordellès, and O. Ramaré, Explicit upper bounds for the remainder term in the divisor problem 1025
Timothy Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line 1053
Wolfgang Keller, Jacques Martinet, and Achill Schürmann, with an Appendix by Mathieu Dutour Sikirić, On classifying Minkowskian sublattices ... 1063
Jorge Jiménez Urroz, Florian Luca, and Igor E. Shparlinski, On the number of isogeny classes of pairing-friendly elliptic curves and statistics of MNT curves ... 1093
Bas Heijne, The maximal rank of elliptic Delsarte surfaces 1111
Andrew V. Sutherland, Constructing elliptic curves over finite fields with prescribed torsion .. 1131
V. G. Lopez Neumann and Constantin Manoil, Explicit computations on the desingularized Kummer surface 1149
Amir Hashemi, Efficient computation of Castelnuovo-Mumford regularity 1163
David Loeffler and Jared Weinstein, On the computation of local components of a newform ... 1179
Reinier Bröker, Kristin Lauter, and Andrew V. Sutherland, Modular polynomials via isogeny volcanoes 1201
Terence Tao, Ernest Croot III, and Harald Helfgott, Deterministic methods to find primes .. 1233
L. Demkowicz, J. Gopalakrishnan, and J. Schöberl, Polynomial extension operators. Part III ... 1289
Bernardo Cockburn, Weifeng Qiu, and Ke Shi, Conditions for superconvergence of HDG methods for second-order elliptic problems . 1327
Bernardo Cockburn and Jintao Cui, An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions ... 1355
Bangti Jin and Xiliang Lu, Numerical identification of a Robin coefficient in parabolic problems .. 1369
Yonghai Li, Shi Shu, Yuesheng Xu, and Qingsong Zou, Multilevel preconditioning for the finite volume method 1399
T. Gallouët, A. Larcher, and J. C. Latché, Convergence of a finite volume scheme for the convection-diffusion equation with L1 data 1429
Laurent Demanet and Lexing Ying, Fast wave computation via Fourier integral operators .. 1455
Xiao-Wen Chang, Damien Stehlé, and Gilles Villard, Perturbation analysis of the QR factor R in the context of LLL lattice basis reduction 1487
Xinzheng Zhang, Liqun Qi, and Yinyu Ye, The cubic spherical optimization problems ... 1513
Claude Brezinski, Yi He, Xing-Biao Hu, Michela Redivo-Zaglia, and Jian-Qing Sun, Multistep ε-algorithm, Shanks’ transformation, and the Lotka–Volterra system by Hirota’s method 1527
Georg Berschneider, Wolfgang zu Castell, and Stefan J. Schrödl, Function spaces for conditionally positive definite operator-valued kernels ... 1551
Michael Filaseta and Michael J. Mossinghoff, The distance to an irreducible polynomial, II ... 1571
Louis Leroux, Computing the torsion points of a variety defined by lacunary polynomials .. 1587
Aureliano M. Robles-Pérez and José Carlos Rosales, The Frobenius problem for numerical semigroups with embedding dimension equal to three ... 1609
Markus Kirschmer, A normal form for definite quadratic forms over \(\mathbb{F}_q[t] \) .. 1619
T. A. Fisher and G. F. Sills, Local solubility and height bounds for coverings of elliptic curves ... 1635
San Ling, Enver Ozdemir, and Chaoping Xing, Constructing irreducible polynomials over finite fields .. 1663
Kevin A. Broughan and A. Ross Barnett, Gram lines and the average of the real part of the Riemann zeta function 1669
Werner Bley, Numerical evidence for the equivariant Birch and Swinnerton-Dyer conjecture (Part II) .. 1681
Luis M. Navas, Francisco J. Ruiz, and Juan L. Varona, Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials 1707
Ghaith A. Hiary and Andrew M. Odlyzko, The zeta function on the critical line: Numerical evidence for moments and random matrix theory models ... 1723
S. Adam Fletcher, Pace P. Nielsen, and Pascal Ochem, Sieve methods for odd perfect numbers .. 1753
Enrique Treviño, The least inert prime in a real quadratic field

Jérémy Berthomieu and Grégoire Lecerf, Reduction of bivariate polynomials from convex-dense to dense, with application to factorizations

Jeroen Sijsling, Arithmetic (1; e)-curves and Belyi maps

Aron Simis and Rafael H. Villarreal, Combinatorics of Cremona monomial maps

Pascal Ochem and Michaël Rao, Odd perfect numbers are greater than 10^{1500}
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Spectral measures and Cuntz algebras ... 2275
M. H. Castro and V. A. Menegatto, Eigenvalue decay of positive integral operators on the sphere ... 2303
Eugenio P. Balanzario and Jorge Sánchez-Ortiz, Riemann-Siegel integral formula for the Lerch zeta function 2319
Pieter Rozenhart, Michael Jacobson Jr., and Renate Scheidler, Tabulation of cubic function fields via polynomial binary cubic forms . 2335
Nathan C. Ryan, Nils-Peter Skoruppa, and Fredrik Strömberg, Numerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two ... 2361
H. Jager, A metrical result on the approximation by continued fractions .. 2377
J. Beers, D. Henshaw, C. K. McCall, S. B. Mulay, and M. Spindler, Corrigenda and addenda to “Fundamentality of a cubic unit u for Z[u]” 2383
I. Bauer and R. Pignatelli, The classification of minimal product-quotient surfaces with $p_g = 0$.. 2389
L. Naughton and G. Pfeiffer, Computing the table of marks of a cyclic extension .. 2419
Simon R. Blackburn and James F. McKee, Constructing k-radius sequences .. 2439
L. Hajdu and N. Saradha, Disproof of a conjecture of Jacobsthal 2461
Editorial Information

Information on the backlog for this journal can be found on the AMS website starting from http://www.ams.org/mcom.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. The AMS uses Centralized Manuscript Processing for initial submission. Authors should submit a PDF file using the Initial Manuscript Submission form found at www.ams.org/submission/mcom, or send one copy of the manuscript to the following address: Centralized Manuscript Processing, MATHEMATICS OF COMPUTATION, 201 Charles Street, Providence, RI 02904-2294 USA. If a paper copy is being forwarded to the AMS, indicate that it is for Mathematics of Computation and include the name of the corresponding author and contact information, such as an email address or mailing address. The author may suggest an appropriate editor for his or her paper.

The first page must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The abstract must be brief, reasonably self-contained, and not exceed 300 words. Included with the footnotes to the paper should be the 2010 Mathematics Subject Classification representing the primary and secondary subjects of the article. The classifications are accessible from www.ams.org/msc/. The Mathematics Subject Classification footnote may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest Mathematical Reviews annual index. The series abbreviations are also accessible from www.ams.org/msnhtml/serials.pdf. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at www.ams.org/mrlookup/.

Electronically prepared manuscripts. For the final submission of accepted papers, the AMS encourages use of electronically prepared manuscripts, with a strong preference for \texttt{AMS-LATEX}. To this end, the Society has prepared \texttt{AMS-LATEX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-LATEX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \texttt{TEX}, using \texttt{AMS-LATEX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-LATEX} papers also move more efficiently through the production stream, helping to minimize publishing costs.

\texttt{AMS-LATEX} is the highly preferred format of \texttt{TEX}, but author packages are also available in \texttt{AMS-\LaTeX}. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \texttt{\LaTeX} or plain \texttt{TEX} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. \texttt{\LaTeX} users will find that \texttt{AMS-LATEX} is the same as \texttt{\LaTeX} with additional
commands to simplify the typesetting of mathematics, and users of plain \TeX should have
the foundation for learning \LaTeX.

Authors may retrieve an author package for *Mathematics of Computation* from
www.ams.org/mcom/mcomauthorpac.html or via FTP to ftp.ams.org (login as anonymous,
enter your complete email address as password, and type cd pub/author-info). The
AMS Author Handbook and the Instruction Manual are available in PDF format from the
author package link. The author package can also be obtained free of charge by sending
e-mail to tech-support@ams.org or from the Publication Division, American Mathematical
Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author
package, please specify \LaTeX or \LaTeX and the publication in which your paper
will appear. Please be sure to include your complete email address.

After acceptance. The source files for the final version of the electronic manuscript
should be sent to the Providence office immediately after the paper has been accepted for
publication. The author should also submit a PDF of the final version of the paper to the
Managing Editor, who will forward a copy to the Providence office. Accepted electroni-
cally prepared manuscripts can be submitted via the web at www.ams.org/submit-book-
journal/, sent via email to pub-submit@ams.org, or sent on CD to the Electronic Pre-
press Department, American Mathematical Society, 201 Charles Street, Providence, RI
02904-2294 USA. When sending a manuscript electronically via email or CD, please be
sure to include a message indicating in which publication the paper has been accepted.
No corrections will be accepted electronically. Authors must mark their changes on their
proof copies and return them to the Providence office. Complete instructions on how to
send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available
starting from www.ams.org/authors/journals.html. A few of the major requirements
are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics
originated via a graphics application as well as scanned photographs or other computer-
generated images. If this is not possible, TIFF files are acceptable as long as they can be
opened in Adobe Photoshop or Illustrator.

Authors using graphics packages for the creation of electronic art should also avoid the
use of any lines thinner than 0.5 points in width. Many graphics packages allow the user
to specify a “hairline” for a very thin line. Hairlines often look acceptable when proofed
on a typical laser printer. However, when produced on a high-resolution laser imagesetter,
hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this
range are too light or too dark to print correctly. Variations of screens within a graphic
should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to
the AMS website individually after proof is returned from authors and before appearing
in an issue. To preserve the integrity of electronically published articles, once an article is
individually posted to the AMS website but not yet in an issue, changes cannot be made
in place in the paper. However, an “Added after posting” section may be added to the
paper right before the References when there is a critical error in the content of the paper.
The “Added after posting” section gives the author an opportunity to correct this type
of critical error before the article is put into an issue for printing and before it is then
reposted with the issue. The “Added after posting” section remains a permanent part of
the paper. The AMS does not keep author-related information, such as affiliation, current
address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the
AMS website, corrections may be made to the paper by submitting a traditional errata
article. The errata article will appear in a future print issue and will link back and forth
on the web to the original article online.
Secure manuscript tracking on the Web. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to mcom-query@ams.org.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to mcom-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.

Editorial Committee

SUSANNE C. BRENNER, Chair, Center for Computation and Technology, Johnston Hall, Louisiana State University, Baton Rouge, LA 70803 USA; E-mail: mathcomp@math.lsu.edu

RONALD F. A. COOLS, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Heverlee, Belgium; E-mail: ronald.cools@cs.kuleuven.ac.be

IGOR E. SHPARLINSKI, Department of Computing, Macquarie University, Sydney, New South Wales 2109, Australia; E-mail: igor.shparlinski@mq.edu.au

CHI-WANG SHU, Applied Mathematics Division, Brown University, P.O. Box F, 182 George St., Providence, RI 02912-0001 USA; E-mail: mathcomp@dam.brown.edu

Board of Associate Editors

REMI ABGRALL, INRIA & Institut Polytechnique de Bordeaux, Team Bacchus and Institut de Mathematiques de Bordeaux, Bat A29 bis, 351 cours de la Liberation, 33 405 Talence, Cedex France; E-mail: abgrall@math.u-bordeaux.fr

DANIELA CALVETTI, Department of Mathematics, Case Western Reserve University, Yost Hall, 10900 Euclid Avenue., Cleveland, OH 44106 USA; E-mail: daniela.calvetti@case.edu

ZHI-MING CHEN, Institute of Computational Mathematics, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China; E-mail: zmchen@lsec.cc.ac.cn

RICARDO G. DURAN, Department of Mathematics, University of Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires, Argentina; E-mail: rduran@dm.uba.ar

VIVETTE GIRAULT, Laboratoire Jacques-Louis Lions, Boite courrier 187, Université de Pierre et Marie Curie, 4, place Jussieu, 75252 Paris Cedex 05, France; E-mail: girault@ann.jussieu.fr

DOUGLAS HARDIN, Vanderbilt University Department of Mathematics 1326 Stevenson Center Nashville, TN 37240 USA; E-mail: doug.hardin@vanderbilt.edu

FRED J. HICKERNELL, Department of Applied Mathematics, Illinois Institute of Technology, E1 Building, Room 208, 10 W. 32nd Street, Chicago, IL 60616-3793 USA; E-mail: hickernell@iit.edu

GREGOR KEMPER, Technische Universität München, Zentrum Mathematik M 11, Boltzmannstr 3, 85748 Garching, Germany; E-mail: kemper@ma.tum.de

BORIS N. KHOROMSKIJ, Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany; E-mail: bochk@mis.mpg.de

CHRISTIAN LUBICH, Universität Tübingen, Mathematik, Auf der Morgenstelle 10, 72076 Tübingen; E-mail: lubich@ma.uni-tuebingen.de

GUNTER MALLE, Fachbereich Mathematik, Universität Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany; E-mail: malle@mathematik.uni-kl.de

MICHAEL J. MOSSINGHOFF, Department of Mathematics, Davidson College, Davidson, NC 28035-6996 USA; E-mail: mimossinghoff@davidson.edu

STANLEY Osher, Department of Mathematics, University of California, P.O. Box 95155, Los Angeles, CA 90095-1555 USA; E-mail: sjo@math.ucla.edu
(Continued from back cover)

Eugenio P. Balanzario and Jorge Sánchez-Ortiz, Riemann-Siegel integral formula for the Lerch zeta function ... 2319

Pieter Rozenhart, Michael Jacobson Jr., and Renate Scheidler,
Tabulation of cubic function fields via polynomial binary cubic forms 2335

Nathan C. Ryan, Nils-Peter Skoruppa, and Fredrik Strömberg,
Numerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two .. 2361

H. Jager, A metrical result on the approximation by continued fractions . 2377

J. Beers, D. Henshaw, C. K. McCall, S. B. Mulay, and M. Spindler,
Corrigenda and addenda to “Fundamentality of a cubic unit u for \(\mathbb{Z}[u] \)” 2383

I. Bauer and R. Pignatelli, The classification of minimal product-quotient surfaces with \(p_g = 0 \) ... 2389

L. Naughton and G. Pfeiffer, Computing the table of marks of a cyclic extension ... 2419

Simon R. Blackburn and James F. McKee, Constructing \(k \)-radius sequences ... 2439

L. Hajdu and N. Saradha, Disproof of a conjecture of Jacobsthal 2461
J. Guzmán and D. Leykekhman, Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra . 1879
Zhiqiang Cai and Shun Zhang, Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation . 1903
Liangyue Ji, Yan Xu, and Jennifer K. Ryan, Accuracy-enhancement of discontinuous Galerkin solutions for convection-diffusion equations in multiple-dimensions 1929
Jean-Luc Guermond, Peter D. Minev, and Abner J. Salgado, Convergence analysis of a class of massively parallel direction splitting algorithms for the Navier-Stokes equations in simple domains 1951
S. Mishra and Ch. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data ... 1979
R. Eymard, T. Gallouët, R. Herbin, and A. Linke, Finite volume schemes for the biharmonic problem on general meshes 2019
Barbara Kaltenbacher and Jonas Offtermatt, A convergence analysis of regularization by discretization in preimage space 2049
Tony Lelièvre, Mathias Rousset, and Gabriel Stoltz, Langevin dynamics with constraints and computation of free energy differences 2071
Sunyoung Bu, Jingfang Huang, and Michael L. Minion, Semi-implicit Krylov deferred correction methods for differential algebraic equations 2127
Avram Sidi, Euler–Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities 2159
Michael Gnewuch, Infinite-dimensional integration on weighted Hilbert spaces .. 2175
Henryk Trappmann and Dmitrii Kouznetsov, Computation of the two regular super-exponentials to base exp(1/e) 2207
Kenier Castillo, Regina Litz Lamblém, Fernando Rodrigo Rafaeli, and Alagacne Sri Ranga, Szegő and para-orthogonal polynomials on the real line: Zeros and canonical spectral transformations 2229
Howard S. Cohl, Table Errata to “Formulas and theorems for the special functions of mathematical physics” by W. Magnus, F. Oberhettinger & R. P. Soni (1966) .. 2251
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Fourier duality for fractal measures with affine scales .. 2253
Dorin Ervin Dutkay and Palle E. T. Jorgensen, Spectral measures and Cuntz algebras .. 2275
M. H. Castro and V. A. Menegatto, Eigenvalue decay of positive integral operators on the sphere .. 2303

(Continued on inside back cover)