Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Irreducibility criterion for algebroid curves


Author: Takafumi Shibuta
Journal: Math. Comp. 82 (2013), 531-554
MSC (2010): Primary 14H50, 14Q05; Secondary 14H20, 13F25
DOI: https://doi.org/10.1090/S0025-5718-2012-02607-X
Published electronically: June 4, 2012
MathSciNet review: 2983035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to give an algorithm for deciding the irreducibility of reduced algebroid curves over any algebraically closed field without using resolution of singularities. To do this, we introduce a new notion of local tropical variety which is a straightforward extension of tropism introduced by Maurer, and we prove an analogue of the the fundamental theorem of tropical geometry.


References [Enhancements On Off] (What's this?)

  • 1. S. Abhyankar, Irreducibility criterion for germs of analytic functions of two complex variables, Adv. Math. 74 (1989), 190-257. MR 997097 (90h:32018)
  • 2. R. Bahloul, N. Takayama, Local Gröbner fans: polyhedral and computational approach, preprint (2004), arXiv:math/0412044v2.
  • 3. R. Bieri, J.R.J. Groves, The geometry of the set of characters induced by valuations, J. reine und angewandte Mathematik 347 (1984), 168-195. MR 733052 (86c:14001)
  • 4. T. Bogart, A. Jensen, D. Speyer, B. Sturmfels, and R. Thomas: Computing tropical varieties, J. Symbolic Comput. 42 (2007), 54-73. MR 2284285 (2007j:14103)
  • 5. D. Cox, J. Little, D. O'Shea, Ideals, Varieties and Algorithms, Springer-Verlag, 1992. MR 1189133 (93j:13031)
  • 6. D. Cox, J. Little, D. O'Shea, Using Algebraic Geometry, Springer-Verlag, 1998. MR 1639811 (99h:13033)
  • 7. C. Delorme, Sous-monoides d'intersection complète de N. Ann. Scient. Ec. Norm. Sup. 4$ ^e$ Série, t. 9: 145-154, 1976. MR 0407038 (53:10821)
  • 8. J. Draisma, A tropical approach to secant dimensions, Journal of Pure and Applied Algebra 212 (2008), 349-363. MR 2357337 (2008j:14102)
  • 9. M. Einsiedler, M. Kapranov, and D. Lind, Non-Archimedean amoebas and tropical varieties, J. Reine Angew. Math., 601 (2006), 139-157. MR 2289207 (2007k:14038)
  • 10. J. Fresnel, M. van der Put, Rigid Analytic Geometry and its Applications, Progress in Mathematics 218, Birkhäuser, 2003. MR 2014891 (2004i:14023)
  • 11. G.-M. Greuel, G. Pfister, A Singular Introduction to Commutative Algebra, Springer-Verlag, Berlin, 2002, With contributions by Olaf Bachmann, Christoph Lossen and Hans Schonemann, With 1 CD-ROM (Windows, Macintosh, and UNIX). MR 2363237 (2008j:13001)
  • 12. A. Hefez, M.E. Hernandes, Computational Methods in the Local Theory of Curves, $ 23^{\circ }$ Colóquio Brasileiro de Matemática, IMPA, 2001. MR 1849596 (2002g:14043)
  • 13. A. Hefez, M.E. Hernandes, Standard bases for local rings of branches and their modules of differentials, J. Symb. Comp. 42 (2007), 178-191. MR 2284291 (2008g:13035)
  • 14. A. Jensen, H. Markwig, T. Markwig, An algorithm for lifting points in a tropical variety, Collect. Math. 59 (2008), no. 2, 129-165. MR 2414142 (2009a:14077)
  • 15. E. Kunz, The value-semigroup of a one dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25, (1970), 748-751. MR 0265353 (42:263)
  • 16. T. C. Kuo, A simple algorithm for deciding primes in $ K[[x,y]]$. Canad, J. Math. 47, no. 4 (1995), 801-816. MR 1346164 (96k:13031)
  • 17. J. Maurer, Puiseux expansion for space curves, Manuscripta Math., 32 (1980), 91-100. MR 592712 (81m:32009)
  • 18. M. Nagata, Local Rings, Intersciences Publishers, New York, London, 1962. MR 0155856 (27:5790)
  • 19. L. Robbianno, M. Sweedler, Subalgebra Bases, Lecture Notes in Math., vol. 1430, Springer, 1990, 67-87. MR 1068324 (91f:13027)
  • 20. D. Speyer, B. Sturmfels, The tropical Grassmannian, Advances in Geometry, 4 (2004), 389-411. MR 2071813 (2005d:14089)
  • 21. B. Sturmfels, Gröbner Bases and Convex Polytopes, Univ. Lecture Ser., vol. 8, Amer.Math. Soc., Providence, 1996. MR 1363949 (97b:13034)
  • 22. B. Sturmfels, Solving Systems of Polynomial Equations, CBMS Regional Conference Series in Math., 97, American Mathematical Society, 2002. MR 1925796 (2003i:13037)
  • 23. J. Teitelbaum, The computational complexity of the resolution of plane curve singularities, Math. Comput. 54 190 (1990), 797-837. MR 1010602 (90j:14007)
  • 24. N. Touda, Local Tropical Variety, preprint (2005), arXiv:math.AG/0511486.
  • 25. V. Weispfenning, Comprehensive Gröbner bases, J. Symbolic Computation, 14 (1991), 1-29. MR 1177987 (93h:13029)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 14H50, 14Q05, 14H20, 13F25

Retrieve articles in all journals with MSC (2010): 14H50, 14Q05, 14H20, 13F25


Additional Information

Takafumi Shibuta
Affiliation: Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Tokyo 171-8501, Japan
Email: shibuta@rikkyo.ac.jp

DOI: https://doi.org/10.1090/S0025-5718-2012-02607-X
Received by editor(s): February 23, 2011
Received by editor(s) in revised form: February 25, 2011, and August 16, 2011
Published electronically: June 4, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society