Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Explicit isogeny descent on elliptic curves


Authors: Robert L. Miller and Michael Stoll
Journal: Math. Comp. 82 (2013), 513-529
MSC (2010): Primary 11G05; Secondary 14G05, 14G25, 14H52
DOI: https://doi.org/10.1090/S0025-5718-2012-02619-6
Published electronically: June 11, 2012
MathSciNet review: 2983034
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we consider an $ \ell $-isogeny descent on a pair of elliptic curves over  $ \mathbb{Q}$. We assume that $ \ell > 3$ is a prime. The main result expresses the relevant Selmer groups as kernels of simple explicit maps between finite-dimensional $ \mathbb{F}_\ell $-vector spaces defined in terms of the splitting fields of the kernels of the two isogenies. We give examples of proving the $ \ell $-part of the Birch and Swinnerton-Dyer conjectural formula for certain curves of small conductor.


References [Enhancements On Off] (What's this?)

  • 1. C. Beaver: $ 5$-torsion in the Shafarevich-Tate group of a family of elliptic curves, J. Number Th. 82 (2000), 25-46. MR 1755152 (2001d:11059)
  • 2. C. Breuil, B. Conrad, F. Diamond, R. Taylor: On the modularity of elliptic curves over $ \mathbb{Q}$: wild $ 3$-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. MR 1839918 (2002d:11058)
  • 3. J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä: Irregular primes and cyclotomic invariants to four million, Math. Comp. 61 (1993), 151-153. MR 1197511 (93k:11014)
  • 4. J.W.S. Cassels: Arithmetic on curves of genus 1. I. On a conjecture of Selmer, J. Reine Angew. Math. 202 (1959), 52-99. MR 0109136 (22:24)
  • 5. J.W.S. Cassels: Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180-189. MR 0179169 (31:3420)
  • 6. J.E. Cremona: Algorithms for modular elliptic curves, Second edition, Cambridge University Press, Cambridge, 2007. MR 1628193 (99e:11068)
  • 7. J.E. Cremona: Elliptic curves database, available online at http://www.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html
  • 8. J.E. Cremona: Online notes, available as item 26 at http://www.warwick.ac.uk/staff/J.E.Cremona/papers
  • 9. J.E. Cremona, T.A. Fisher, C. O'Neil, D. Simon, M. Stoll: Explicit $ n$-descent on elliptic curves, I. Algebra, J. Reine Angew. Math. 615 (2008), 121-155; II. Geometry, J. Reine Angew. Math. 632 (2009), 63-84; III. Algorithms, preprint (2011), arXiv:1107.3516v1 [math.NT]. MR 2384334 (2009g:11067;MR 2544143 (2011d:11128)
  • 10. B. Creutz, R.L. Miller: Second isogeny descents and the Birch and Swinnerton-Dyer conjectural formula, preprint (2011), arXiv:1105.4018v1 [math.NT].
  • 11. M. DeLong: A formula for the Selmer group of a rational three-isogeny, Acta Arith. 105 (2002), 119-131. MR 1932762 (2003i:11069)
  • 12. T. Dokchitser, V. Dokchitser: On the Birch-Swinnerton-Dyer quotients modulo squares, Ann. Math. 172 (2010), 567-596. MR 2680426 (2011h:11069)
  • 13. T. Dokchitser, V. Dokchitser: Parity of ranks for elliptic curves with a cyclic isogeny, J. Number Th. 128 (2008), 662-679. MR 2389862 (2009c:11079)
  • 14. N. Elkies, N. Rogers: Elliptic curves $ x^3 + y^3 = k$ of high rank, in: Algorithmic number theory, Springer Lect. Notes in Comp. Sci. 3076, pp. 184-193, 2004. MR 2137353 (2006c:11064)
  • 15. T.A. Fisher: On $ 5$ and $ 7$ descents for elliptic curves, Ph.D. thesis, University of Cambridge (2000).
  • 16. T.A. Fisher: Some examples of $ 5$ and $ 7$ descent for elliptic curves over $ \mathbb{Q}$, J. Eur. Math. Soc. (JEMS) 3 (2001), 169-201. MR 1831874 (2002m:11045)
  • 17. E.V. Flynn, C. Grattoni: Descent via isogeny on elliptic curves with large rational torsion subgroups, J. Symb. Comp. 43 (2008), 293-303. MR 2402033 (2009c:11080)
  • 18. E.V. Flynn, C. Grattoni: PARI programs, available at http://people.maths.ox.ac.uk/flynn/genus2/flynngrattoni/.
  • 19. G. Frey: Der Rang der Lösungen von $ Y^2 = X^3 \pm p^3$ über $ \mathbb{Q}$, Manuscr. Math. 48 (1984), 71-101. MR 753725 (86g:11033)
  • 20. V.A. Kolyvagin: Finiteness of $ E(\mathbb{Q})$ and $ \mathrm {\Russian {Sh}}(E,\mathbb{Q})$ for a subclass of Weil curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522-540, 670-671; translation in Math. USSR-Izv. 32 (1989), no. 3, 523-541. MR 954295 (89m:11056)
  • 21. B. Mazur: Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162,. MR 482230 (80h:14022)
  • 22. R.L. Miller: Proving the Birch and Swinnerton-Dyer conjecture for specific elliptic curves of analytic rank zero and one, LMS J. Comput. Math. 14 (2011), 327-350. MR 2861691
  • 23. J.S. Milne: Arithmetic duality theorems, Perspectives in Mathematics, vol. 1, Academic Press, Orlando, Florida, 1986. MR 881804 (88e:14028)
  • 24. L.J. Mordell: On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179-192.
  • 25. J. Nekovář: Class number of quadratic fields and Shimura's correspondence, Math. Ann. 287 (1990), 577-594.
  • 26. J. Neukirch: Algebraische Zahlentheorie, Springer-Verlag, Berlin Heidelberg, 1994.
  • 27. J. Quer: Corps quadratiques de $ 3$-rang $ 6$ et courbes elliptiques de rang $ 12$, C. R. Acad. Sci. Paris (I) 305 (1987), 215-218. MR 907945 (88j:11074)
  • 28. P. Satgé: Groupes de Selmer et corps cubiques, J. Number Th. 23 (1986), 294-317. MR 846960 (87i:11070)
  • 29. E.F. Schaefer: Class groups and Selmer groups, J. Number Th. 56 (1996), no. 1, 79-114. MR 1370197 (97e:11068)
  • 30. E.F. Schaefer: Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), 447-471. MR 1612262 (99h:11063)
  • 31. E.F. Schaefer, M. Stoll: How to do a $ p$-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), 1209-1231. MR 2021618 (2004g:11045)
  • 32. E.S. Selmer: The diophantine equation $ ax^3 + by^3 +cz^3 = 0$, Acta Math. (Stockh.) 85 (1951), 203-362. MR 0041871 (13:13i)
  • 33. E.S. Selmer: The diophantine equation $ ax^3 + by^3 +cz^3 = 0$. Completion of the tables, Acta Math. (Stockh.) 92 (1954), 191-197. MR 0067131 (16:674e)
  • 34. J.H. Silverman: The arithmetic of elliptic curves, Springer Graduate Texts in Mathematics 106, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986. MR 817210 (87g:11070)
  • 35. J.H. Silverman: Advanced topics in the arithmetic of elliptic curves, Springer Graduate Texts in Mathematics 151, Springer-Verlag, New York, Berlin, Heidelberg, 1994. MR 1312368 (96b:11074)
  • 36. J. Top: Descent by $ 3$-isogeny and $ 3$-rank of quadratic fields, Advances in number theory (Kingston, ON, 1991), 303-317, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. MR 1368429 (97d:11167)
  • 37. J. Vélu: Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris, Série A 273 (1971), 238-241. MR 0294345 (45:3414)
  • 38. A.J. Wiles: Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 2 (1995), no. 3, 443-551. MR 1333035
  • 39. J. Woo: Arithmetic of elliptic curves and surfaces: descents and quadratic sections, Ph.D. thesis, Harvard University (2010).

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11G05, 14G05, 14G25, 14H52

Retrieve articles in all journals with MSC (2010): 11G05, 14G05, 14G25, 14H52


Additional Information

Robert L. Miller
Affiliation: Warwick Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom – and – The Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720-5070
Address at time of publication: Quid, Inc., 733 Front Street, C1A, San Francisco, California 94111
Email: rmiller@quid.com

Michael Stoll
Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
Email: Michael.Stoll@uni-bayreuth.de

DOI: https://doi.org/10.1090/S0025-5718-2012-02619-6
Received by editor(s): January 23, 2011
Received by editor(s) in revised form: August 2, 2011
Published electronically: June 11, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society