Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations


Authors: Ralf Hiptmair, Andrea Moiola and Ilaria Perugia
Journal: Math. Comp. 82 (2013), 247-268
MSC (2010): Primary 65N15, 65N30, 35Q61
DOI: https://doi.org/10.1090/S0025-5718-2012-02627-5
Published electronically: July 3, 2012
MathSciNet review: 2983024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we extend to the time-harmonic Maxwell equations the $ p$-version analysis technique developed in [R. Hiptmair, A. Moiola and I. Perugia, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $ p$-version, SIAM J. Numer. Anal., 49 (2011), 264-284] for Trefftz-discontinuous Galerkin approximations of the Helmholtz problem. While error estimates in a mesh-skeleton norm are derived parallel to the Helmholtz case, the derivation of estimates in a mesh-independent norm requires new twists in the duality argument. The particular case where the local Trefftz approximation spaces are built of vector-valued plane wave functions is considered, and convergence rates are derived.


References [Enhancements On Off] (What's this?)

  • 1. M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal. 42 (2004), no. 2, 563-575. MR 2084226 (2005i:65174)
  • 2. -, Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods, J. Comput. Phys. 198 (2004), no. 1, 106-130. MR 2071391 (2005d:65161)
  • 3. -, Dispersive properties of high order Nédélec/edge element approximation of the time-harmonic Maxwell equations, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004), no. 1816, 471-491. MR 2075903
  • 4. M. Amara, R. Djellouli, and C. Farhat, Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1038-1066. MR 2485444 (2010a:65226)
  • 5. C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci. 21 (1998), no. 9, 823-864. MR 1626990 (99e:35037)
  • 6. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2002), no. 5, 1749-1779. MR 1885715 (2002k:65183)
  • 7. I. Babuška and J. M. Melenk, The partition of unity method, Internat. J. Numer. Methods Engrg. 40 (1997), no. 4, 727-758. MR 1429534 (97j:73071)
  • 8. Z. Badics and Y. Matsumoto, Trefftz discontinuous Galerkin methods for time-harmonic electromagnetic and ultrasound transmission problems, International Journal of Applied Electromagnetics and Mechanics 28 (2008), no. 1-2, 17-24.
  • 9. T. Bagby, L. Bos, and N. Levenberg, Quantitative approximation theorems for elliptic operators, J. Approx. Theory 85 (1996), no. 1, 69-87. MR 1382051 (97h:41060)
  • 10. S. C. Brenner, F. Li, and L.-Y. Sung, A locally divergence-free nonconforming finite element method for the reduced time-harmonic Maxwell equation, Math. Comput. 76 (2007), 573-595. MR 2291828 (2008c:65316)
  • 11. S. C. Brenner, F. Li, and L.-Y. Sung, Nonconforming Maxwell eigensolvers, J. Sci. Comput. 40 (2009), no. 1-3, 51-85. MR 2511728 (2010i:65251)
  • 12. S. C. Brenner and L. R. Scott, Mathematical theory of finite element methods, 3rd ed., Texts Appl. Math., Springer-Verlag, New York, 2007.
  • 13. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations. I. An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci. 24 (2001), no. 1, 9-30. MR 1809491 (2002b:78024)
  • 14. A. Buffa, M. Costabel, and C. Schwab, Boundary element methods for Maxwell's equations on non-smooth domains, Numer. Math. 92 (2002), no. 4, 679-710. MR 1935806 (2003k:65159)
  • 15. A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation, M2AN, Math. Model. Numer. Anal. 42 (2008), no. 6, 925-940. MR 2473314 (2009j:65295)
  • 16. A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Maxwell eigenproblem, SIAM J. Numer. Anal. 44 (2006), no. 5, 2198-2226. MR 2263045 (2007k:65173)
  • 17. O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D, Ph.D. thesis, Université Paris IX Dauphine, 1996.
  • 18. O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation, SIAM J. Numer. Anal. 35 (1998), no. 1, 255-299. MR 1618464 (99b:65139)
  • 19. -, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation, J. Comput. Acoust. 11 (2003), 227-238. MR 2013687 (2004j:65182)
  • 20. D. Copeland, U. Langer, and D. Pusch, From the boundary element domain decomposition methods to local Trefftz finite element methods on polyhedral meshes., Bercovier, Michel (ed.) et al., Domain decomposition methods in science and engineering XVIII. Berlin: Springer. Lecture Notes in Computational Science and Engineering 70, 315-322, 2009. MR 2762421 (2011m:65299)
  • 21. E. Creusé and S. Nicaise, Discrete compactness for a discontinuous Galerkin approximation of Maxwell's system, M2AN Math. Model. Numer. Anal. 40 (2006), 413-430. MR 2241830 (2008a:65207)
  • 22. G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems, J. Comput. Phys. 225 (2007), 1961-1984. MR 2349691 (2009e:65173)
  • 23. G. Gabard, P. Gamallo, and T. Huttunen, A comparison of wave-based discontinuous Galerkin, ultra-weak and least-square methods for wave problems, Internat. J. Numer. Methods Engrg. 85 (2011), no. 3, 380-402. MR 2779291 (2011i:65211)
  • 24. C. J. Gittelson, R. Hiptmair, and I. Perugia, Plane wave discontinuous Galerkin methods: analysis of the $ h$-version, M2AN Math. Model. Numer. Anal. 43 (2009), no. 2, 297-332. MR 2512498 (2010b:65255)
  • 25. P. Grisvard, Elliptic problems in nonsmooth domains, Monogr. Stud. Math., vol. 24, Pitman, Boston, 1985. MR 775683 (86m:35044)
  • 26. -, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris, 1992. MR 1173209 (93h:35004)
  • 27. J. S. Hesthaven and T. Warburton, High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004), no. 1816, 493-524. MR 2075904
  • 28. R. Hiptmair, A. Moiola, and I. Perugia, Stability results for the time-harmonic Maxwell equations with impedance boundary conditions, Math. Mod. Meth. Appl. Sci. 21 (2011), 2263-2287. MR 2860676
  • 29. -, Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the $ p$-version, SIAM J. Numer. Anal. 49 (2011), 264-284. MR 2783225
  • 30. R. Hiptmair and I. Perugia, Mixed plane wave discontinuous Galerkin methods, Domain Decomposition Methods in Science and Engineering XVIII (M. Bercovier, M. J. Gander, R. Kornhuber, and O. Widlund, eds.), Lect. Notes Comput. Sci. Eng., Springer, 2008, pp. 51-62. MR 2743958 (2012b:65182)
  • 31. P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math. 100 (2005), no. 3, 485-518. MR 2194528 (2006k:65323)
  • 32. P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: the indefinite case, M2AN Math. Model. Numer. Anal. 39 (2005), no. 4, 727-753. MR 2165677 (2006h:65186)
  • 33. P. Houston, I. Perugia, and D. Schötzau, $ hp$-DGFEM for Maxwell's equations, Numerical mathematics and advanced applications, Springer Italia, Milan, 2003, pp. 785-794. MR 2360853 (2008i:78011)
  • 34. T. Huttunen, M. Malinen, and P. Monk, Solving Maxwell's equations using the ultra weak variational formulation, J. Comput. Phys. 223 (2007), 731-758. MR 2319231 (2008b:65133)
  • 35. T. Huttunen and P. Monk, The use of plane waves to approximate wave propagation in anisotropic media, J. Comput. Math. 25 (2007), no. 3, 350-367. MR 2320239 (2009b:78012)
  • 36. T. Huttunen, P. Monk, and J. P. Kaipio, Computational aspects of the ultra-weak variational formulation, J. Comput. Phys. 182 (2002), no. 1, 27-46. MR 1936802 (2003j:65107)
  • 37. J. M. Melenk, On approximation in meshless methods, Frontiers of numerical analysis, Universitext, Springer, Berlin, 2005, pp. 65-141. MR 2178270 (2006h:65191)
  • 38. A. Moiola, R. Hiptmair, and I. Perugia, Plane wave approximation of homogeneous Helmholtz solutions, Z. Angew. Math. Phys. 62 (2011), no. 5, 809-837.
  • 39. -, Vekua theory for the Helmholtz operator, Z. Angew. Math. Phys. 62 (2011), no. 5, 779-807.
  • 40. P. Monk, Finite element methods for Maxwell's equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003. MR 2059447 (2005d:65003)
  • 41. P. Monk and D.Q. Wang, A least squares method for the Helmholtz equation, Comput. Methods Appl. Mech. Eng. 175 (1999), no. 1/2, 121-136. MR 1692914 (2000c:76051)
  • 42. I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell's equations, Math. Comput. 72 (2003), 1179-1214. MR 1972732 (2004b:65190)
  • 43. I. Perugia, D. Schötzau, and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations, Comput. Methods Appl. Mech. Eng. 191 (2002), 4675-4697. MR 1929626 (2003j:78058)
  • 44. H. Riou, P. Ladevéze, and B. Sourcis, The multiscale VTCR approach applied to acoustics problems, J. Comput. Acoust. 16 (2008), no. 4, 487-505.
  • 45. I. H. Sloan and R. S. Womersley, Extremal systems of points and numerical integration on the sphere, Adv. Comput. Math. 21 (2004), no. 1-2, 107-125. MR 2065291 (2005b:65024)
  • 46. R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems, Internat. J. Numer. Methods Engrg. 66 (2006), no. 5, 796-815. MR 2219901 (2007a:65215)
  • 47. I. Tsukerman, Electromagnetic applications of a new finite-difference calculus, IEEE Transactions on Magnetics 41 (2005), no. 7, 2206-2225.
  • 48. T. Warburton and M. Embree, The role of the penalty in the local discontinuous Galerkin method for Maxwell's eigenvalue problem, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3205-3223. MR 2220916 (2007e:65125)
  • 49. R. S. Womersley and I. H. Sloan, Interpolation and cubature on the sphere, http://web.
    maths.unsw.edu.au/~rsw/Sphere/.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N15, 65N30, 35Q61

Retrieve articles in all journals with MSC (2010): 65N15, 65N30, 35Q61


Additional Information

Ralf Hiptmair
Affiliation: Seminar for Applied Mathematics, ETH Zürich, 8092 Zürich, Switzerland
Email: ralf.hiptmair@sam.math.ethz.ch

Andrea Moiola
Affiliation: Seminar for Applied Mathematics, ETH Zürich, 8092 Zürich, Switzerland
Address at time of publication: Department of Mathematics and Statistics, University of Reading,Whiteknights, P.O. Box 220, Reading RG6 6AX, UK
Email: andrea.moiola@sam.math.ethz.ch

Ilaria Perugia
Affiliation: Dipartimento di Matematica, Università di Pavia, 27100 Pavia, Italy
Email: ilaria.perugia@unipv.it

DOI: https://doi.org/10.1090/S0025-5718-2012-02627-5
Keywords: Time-harmonic Maxwell’s equation, discontinuous Galerkin methods, Trefftz methods, $p$–version error analysis, duality estimates, plane waves
Received by editor(s): February 21, 2011
Received by editor(s) in revised form: September 3, 2011
Published electronically: July 3, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society